Unsupervised Clustering of Depth Images using Watson Mixture Model

被引:7
|
作者
Hasnat, Md Abul [1 ]
Alata, Olivier [1 ]
Tremeau, Alain [1 ]
机构
[1] Univ St Etienne, St Etienne, France
关键词
Unsupervised Clustering; Model Based Clustering; Watson Distribution; Mixture Model; Depth Image Analysis;
D O I
10.1109/ICPR.2014.46
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose an unsupervised clustering method for axially symmetric directional unit vectors. Our method exploits the Watson distribution and Bregman Divergence within a Model Based Clustering framework. The main objectives of our method are: (a) provide efficient solution to estimate the parameters of a Watson Mixture Model (WMM); (b) generate a set of WMMs and (b) select the optimal model. To this aim, we develop: (a) an efficient soft clustering method; (b) a hierarchical clustering approach in parameter space and (c) a model selection strategy by exploiting information criteria and an evaluation graph. We empirically validate the proposed method using synthetic data. Next, we apply the method for clustering image normals and demonstrate that the proposed method is a potential tool for analyzing the depth image.
引用
收藏
页码:214 / 219
页数:6
相关论文
共 50 条
  • [1] Unsupervised segmentation of cervical cell images using Gaussian Mixture Model
    Ragothaman, Srikanth
    Narasimhan, Sridharakumar
    Basavaraj, Madivala G.
    Dewar, Rajan
    [J]. PROCEEDINGS OF 29TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, (CVPRW 2016), 2016, : 1374 - 1379
  • [2] Unsupervised Clustering of Quantitative Imaging Phenotypes Using Autoencoder and Gaussian Mixture Model
    Chen, Jianan
    Milot, Laurent
    Cheung, Helen M. C.
    Martel, Anne L.
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT IV, 2019, 11767 : 575 - 582
  • [3] UNSUPERVISED AUTOMATIC WHITE MATTER FIBER CLUSTERING USING A GAUSSIAN MIXTURE MODEL
    Liu, Meizhu
    Vemuri, Baba C.
    Deriche, Rachid
    [J]. 2012 9TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2012, : 522 - 525
  • [4] Unsupervised nested Dirichlet finite mixture model for clustering
    Fares Alkhawaja
    Nizar Bouguila
    [J]. Applied Intelligence, 2023, 53 : 25232 - 25258
  • [5] Unsupervised nested Dirichlet finite mixture model for clustering
    Alkhawaja, Fares
    Bouguila, Nizar
    [J]. APPLIED INTELLIGENCE, 2023, 53 (21) : 25232 - 25258
  • [6] Unsupervised clustering using nonparametric finite mixture models
    Hunter, David R. R.
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2024, 16 (01)
  • [7] Unsupervised image segmentation using finite doubly truncated Gaussian mixture model and hierarchical clustering
    Yarramalle, Srinivas
    Rao, K. Srinivas
    [J]. CURRENT SCIENCE, 2007, 93 (04): : 507 - 514
  • [8] Unsupervised Clustering for Hyperspectral Images
    Bilius, Laura Bianca
    Pentiuc, Stefan Gheorghe
    [J]. SYMMETRY-BASEL, 2020, 12 (02):
  • [9] SMIXTURE: strategy for mixture model clustering of multivariate images
    Tran, Thanh N.
    Wehrens, Ron
    Buydens, Lutgarde M. C.
    [J]. JOURNAL OF CHEMOMETRICS, 2005, 19 (11-12) : 607 - 614
  • [10] Research on a Segmentation Algorithm for the Tujia Brocade Images Based on Unsupervised Gaussian Mixture Clustering
    He, Shuqi
    [J]. FRONTIERS IN NEUROROBOTICS, 2021, 15