An optimal automata approach to LTL model checking of probabilistic systems

被引:34
|
作者
Couvreur, JM [1 ]
Saheb, N
Sutre, G
机构
[1] ENS Cachan, LSV, Cachan, France
[2] Univ Bordeaux 1, LaBRI, F-33405 Talence, France
关键词
D O I
10.1007/978-3-540-39813-4_26
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Most verification problems on finite systems may be formulated and solved optimally using automata based techniques. Nonetheless LTL verification of (finite) probabilistic systems, i.e. deciding whether a probabilistic system almost surely satisfies an LTL formula, remains one of the few exceptions to this rule. As a matter of fact, existing automata-based solutions to this problem lead to double EXPTIME algorithms, while Courcoubetis and Yannakakis provide an optimal one in single EXPTIME. In this study, we remedy this exception. Our optimal automata based method proceeds in two steps: we present a minimal translation from LTL to omega-automata and point out appropriate properties on these automata; we then show that checking whether a probabilistic system satisfies an omega-automaton with positive probability can be solved in linear time for this kind of automata. Moreover we extend our study to the evaluation of this probability. Finally, we discuss some experimentations with our implementation of these techniques: the ProbaTaf tool.
引用
收藏
页码:361 / 375
页数:15
相关论文
共 50 条
  • [1] An automata-theoretic approach for model checking threads for LTL properties
    Kahlon, Vineet
    Gupta, Aarti
    [J]. 21ST ANNUAL IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, PROCEEDINGS, 2006, : 101 - +
  • [2] MoChiBA: Probabilistic LTL Model Checking Using Limit-Deterministic Buchi Automata
    Sickert, Salomon
    Kretinsky, Jan
    [J]. AUTOMATED TECHNOLOGY FOR VERIFICATION AND ANALYSIS, ATVA 2016, 2016, 9938 : 130 - 137
  • [3] Measuring Progress of Probabilistic LTL Model Checking
    Cormie-Bowins, Elise
    van Breugel, Franck
    [J]. ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2012, (85): : 33 - 47
  • [4] Larger automata and less work for LTL model checking
    Geldenhuys, J
    Hansen, H
    [J]. MODEL CHECKING SOFTWARE, PROCEEDINGS, 2006, 3925 : 53 - 70
  • [5] A Circuit Approach to LTL Model Checking
    Claessen, Koen
    Een, Niklas
    Sterin, Baruch
    [J]. 2013 FORMAL METHODS IN COMPUTER-AIDED DESIGN (FMCAD), 2013, : 53 - 60
  • [6] Model checking for probabilistic timed automata
    Norman, Gethin
    Parker, David
    Sproston, Jeremy
    [J]. FORMAL METHODS IN SYSTEM DESIGN, 2013, 43 (02) : 164 - 190
  • [7] Model checking for probabilistic timed automata
    Gethin Norman
    David Parker
    Jeremy Sproston
    [J]. Formal Methods in System Design, 2013, 43 : 164 - 190
  • [8] Counterexamples in Probabilistic LTL Model Checking for Markov Chains
    Schmalz, Matthias
    Varacca, Daniele
    Voelzer, Hagen
    [J]. CONCUR 2009 - CONCURRENCY THEORY, PROCEEDINGS, 2009, 5710 : 587 - +
  • [9] MODEL CHECKING PROBABILISTIC PUSHDOWN AUTOMATA
    Esparza, Javier
    Kucera, Antonin
    Mayr, Richard
    [J]. LOGICAL METHODS IN COMPUTER SCIENCE, 2006, 2 (01)
  • [10] Model checking probabilistic pushdown automata
    Esparza, J
    Kucera, A
    Mayr, R
    [J]. 19TH ANNUAL IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, PROCEEDINGS, 2004, : 12 - 21