Fluid flow across mass fractals and self-affine surfaces

被引:29
|
作者
Zhang, XD
Knackstedt, MA
Sahimi, M
机构
[1] AUSTRALIAN NATL UNIV,RES SCH PHYS SCI & ENGN,DEPT APPL MATH,CANBERRA,ACT 0200,AUSTRALIA
[2] UNIV SO CALIF,DEPT CHEM ENGN,LOS ANGELES,CA 90089
来源
PHYSICA A | 1996年 / 233卷 / 3-4期
关键词
D O I
10.1016/S0378-4371(96)00203-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use a lattice-gas method to simulate the slow flow of a fluid in systems with fractal surfaces and volumes. Two systems are studied. One is flow in a single three-dimensional fracture with self-affine surfaces. The other is flow across a three-dimensional diffusion-limited aggregate. In both cases, significant deviations from classical results are observed.
引用
收藏
页码:835 / 847
页数:13
相关论文
共 50 条
  • [1] SELF-AFFINE FRACTALS
    BENNASR, F
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 1992, 116 (01): : 111 - 119
  • [2] MULTIFRACTALITY OF SELF-AFFINE FRACTALS
    BARABASI, AL
    VICSEK, T
    [J]. PHYSICAL REVIEW A, 1991, 44 (04): : 2730 - 2733
  • [3] On the Dimension of Self-Affine Fractals
    Kirat, Ibrahim
    Kocyigit, Ilker
    [J]. CHAOS AND COMPLEX SYSTEMS, 2013, : 151 - 156
  • [4] Surfaces generated by abrasive finishing processes as self-affine fractals
    Thomas, T. R.
    Rosen, B-G.
    [J]. INTERNATIONAL JOURNAL OF SURFACE SCIENCE AND ENGINEERING, 2009, 3 (04) : 275 - 285
  • [5] On a generalized dimension of self-affine fractals
    He, Xing-Gang
    Lau, Ka-Sing
    [J]. MATHEMATISCHE NACHRICHTEN, 2008, 281 (08) : 1142 - 1158
  • [6] Exceptional sets for self-affine fractals
    Falconer, Kenneth
    Miao, Jun
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2008, 145 : 669 - 684
  • [7] SELF-AFFINE FRACTALS AND FRACTAL DIMENSION
    MANDELBROT, BB
    [J]. PHYSICA SCRIPTA, 1985, 32 (04) : 257 - 260
  • [8] THE HAUSDORFF DIMENSION OF SELF-AFFINE FRACTALS
    FALCONER, KJ
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1988, 103 : 339 - 350
  • [9] RANDOM SUBSETS OF SELF-AFFINE FRACTALS
    Falconer, Kenneth
    Miao, Jun
    [J]. MATHEMATIKA, 2010, 56 (01) : 61 - 76
  • [10] SELF-AFFINE FRACTALS AND THE LIMIT H[-0
    PALASANTZAS, G
    [J]. PHYSICAL REVIEW E, 1994, 49 (02): : 1740 - 1742