Validation of Electronic Health Record Phenotyping of Bipolar Disorder Cases and Controls

被引:81
|
作者
Castro, Victor M.
Minnier, Jessica
Murphy, Shawn N.
Kohane, Isaac
Churchill, Susanne E.
Gainer, Vivian
Cai, Tianxi
Hoffnagle, Alison G.
Dai, Yael
Block, Stefanie
Weill, Sydney R.
Nadal-Vicens, Mireya
Pollastri, Alisha R.
Rosenquist, J. Niels
Goryachev, Sergey
Ongur, Dost
Sklar, Pamela
Perlis, Roy H.
Smoller, Jordan W. [1 ]
机构
[1] Partners HealthCare Syst, Res Informat Syst & Comp, Boston, MA 02199 USA
来源
AMERICAN JOURNAL OF PSYCHIATRY | 2015年 / 172卷 / 04期
关键词
RHEUMATOID-ARTHRITIS; MAJOR DEPRESSION; MEDICAL-RECORDS; LARGE-SCALE; RISK; RELIABILITY; DISCOVERY; LOCI;
D O I
10.1176/appi.ajp.2014.14030423
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
Objective: The study was designed to validate use of electronic health records (EHRs) for diagnosing bipolar disorder and classifying control subjects. Method: EHR data were obtained from a health care system of more than 4.6 million patients spanning more than 20 years. Experienced clinicians reviewed charts to identify text features and coded data consistent or inconsistent with a diagnosis of bipolar disorder. Natural language processing was used to train a diagnostic algorithm with 95% specificity for classifying bipolar disorder. Filtered coded data were used to derive three additional classification rules for case subjects and one for control subjects. The positive predictive value (PPV) of EHR-based bipolar disorder and subphenotype diagnoses was calculated against diagnoses from direct semi-structured interviews of 190 patients by trained clinicians blind to EHR diagnosis. Results: The PPV of bipolar disorder defined by natural language processing was 0.85. Coded classification based on strict filtering achieved a value of 0.79, but classifications based on less stringent criteria performed less well. No EHR-classified control subject received a diagnosis of bipolar disorder on the basis of direct interview (PPV=1.0). For most subphenotypes, values exceeded 0.80. The EHR-based classifications were used to accrue 4,500 bipolar disorder cases and 5,000 controls for genetic analyses. Conclusions: Semiautomated mining of EHRs can be used to ascertain bipolar disorder patients and control subjects with high specificity and predictive value compared with diagnostic interviews. EHRs provide a powerful resource for high-throughput phenotyping for genetic and clinical research.
引用
收藏
页码:363 / 372
页数:10
相关论文
共 50 条
  • [1] VALIDATION OF ELECTRONIC HEALTH RECORD-BASED ASCERTAINMENT OF OBSESSIVE COMPULSIVE DISORDER CASES AND CONTROLS
    Soda, Takahiro
    Crowley, James
    Bruer, Emily
    Bershader, Robin
    Collier, Sarah
    Gantz, Emily
    Hucks, Donald
    Johnston, Rebecca
    Maxwell-Horn, Angela
    Soto-Freita, Angelica
    Sutcliffe, James
    Mathews, Carol
    Scharf, Jeremiah
    Cox, Nancy
    Davis, Lea
    [J]. EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2019, 29 : S992 - S992
  • [2] Genetic validation of bipolar disorder identified by automated phenotyping using electronic health records
    Chia-Yen Chen
    Phil H. Lee
    Victor M. Castro
    Jessica Minnier
    Alexander W. Charney
    Eli A. Stahl
    Douglas M. Ruderfer
    Shawn N. Murphy
    Vivian Gainer
    Tianxi Cai
    Ian Jones
    Carlos N. Pato
    Michele T. Pato
    Mikael Landén
    Pamela Sklar
    Roy H. Perlis
    Jordan W. Smoller
    [J]. Translational Psychiatry, 8
  • [3] Genetic validation of bipolar disorder identified by automated phenotyping using electronic health records
    Chen, Chia-Yen
    Lee, Phil H.
    Castro, Victor M.
    Minnier, Jessica
    Charney, Alexander W.
    Stahl, Eli A.
    Ruderfer, Douglas M.
    Murphy, Shawn N.
    Gainer, Vivian
    Cai, Tianxi
    Jones, Ian
    Pato, Carlos N.
    Pato, Michele T.
    Landen, Mikael
    Sklar, Pamela
    Perlis, Roy H.
    Smoller, Jordan W.
    [J]. TRANSLATIONAL PSYCHIATRY, 2018, 8
  • [4] GENETIC VALIDATION OF BIPOLAR DISORDER IDENTIFIED BY AUTOMATED PHENOTYPING USING ELECTRONIC HEALTH RECORDS
    Chen, Chia-Yen
    Lee, Phil
    Castro, Victor
    Minnier, Jessica
    Murphy, Shawn
    Gainer, Vivian
    Cai, Tianxi
    Sklar, Pamela
    Perlis, Roy
    Smoller, Jordan
    [J]. EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2019, 29 : S968 - S969
  • [5] Diabetes Phenotyping Using the Electronic Health Record
    Himali M. Weerahandi
    Leora I. Horwitz
    Saul B. Blecker
    [J]. Journal of General Internal Medicine, 2020, 35 : 3716 - 3718
  • [6] Diabetes Phenotyping Using the Electronic Health Record
    Weerahandi, Himali M.
    Horwitz, Leora I.
    Blecker, Saul B.
    [J]. JOURNAL OF GENERAL INTERNAL MEDICINE, 2020, 35 (12) : 3716 - 3718
  • [7] USING ELECTRONIC HEALTH RECORD DATA FOR COHORT DISCOVERY AND PHENOTYPING OF DEVELOPMENTAL LANGUAGE DISORDER
    Nitin, Rachana
    Walters, Courtney
    Boorom, Olivia
    Margulis, Katherine
    Davis, Lea
    Below, Jennifer
    Camarata, Stephen
    Gordon, Reyna
    [J]. EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2019, 29 : S205 - S205
  • [8] Accuracy of phenotyping chronic rhinosinusitis in the electronic health record
    Hsu, Joy
    Pacheco, Jennifer A.
    Stevens, Whitney W.
    Smith, Maureen E.
    Avila, Pedro C.
    [J]. AMERICAN JOURNAL OF RHINOLOGY & ALLERGY, 2014, 28 (02) : 140 - 144
  • [9] Comorbidity in incident osteoarthritis cases and matched controls using electronic health record data
    Anne Kamps
    Jos Runhaar
    Maria A. J. de Ridder
    Marcel de Wilde
    Johan van der Lei
    Weiya Zhang
    Daniel Prieto-Alhambra
    Martin Englund
    Evelien I. T. de Schepper
    Sita M. A. Bierma-Zeinstra
    [J]. Arthritis Research & Therapy, 25
  • [10] Comorbidity in incident osteoarthritis cases and matched controls using electronic health record data
    Kamps, Anne
    Runhaar, Jos
    de Ridder, Maria A. J.
    de Wilde, Marcel
    van der Lei, Johan
    Zhang, Weiya
    Prieto-Alhambra, Daniel
    Englund, Martin
    de Schepper, Evelien I. T.
    Bierma-Zeinstra, Sita M. A.
    [J]. ARTHRITIS RESEARCH & THERAPY, 2023, 25 (01)