On positive strictly singular operators and domination

被引:3
|
作者
Flores, J [1 ]
Hernández, FL
机构
[1] Univ Rey Juan Carlos, Escet, Area Fis & Matemat Aplicadas, Madrid 28933, Spain
[2] Univ Complutense, Fac Matemat, Dept Anal Matemat, E-28040 Madrid, Spain
关键词
D O I
10.1023/A:1025836620741
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the domination problem by positive strictly singular % operators between Banach lattices. Precisely we show that if E and % F are two Banach lattices such that the norms on E' and F are % order continuous and E satisfies the subsequence splitting property, % and %0 less than or equal to S less than or equal to T : E --> F are two positive operators, then T strictly %singular implies S strictly singular. The special case of %endomorphisms is also considered. Applications to the class of %strictly co-singular (or Pelczynski) operators are given too.
引用
收藏
页码:73 / 80
页数:8
相关论文
共 50 条
  • [1] Domination by positive strictly singular operators
    Flores, J
    Hernández, FL
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2002, 66 : 433 - 452
  • [2] On positive strictly singular operators and domination
    Julio Flores
    Francisco L. Hernández
    Positivity, 2003, 7 : 73 - 80
  • [3] Domination by positive disjointly strictly singular operators
    Flores, J
    Hernández, FL
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (07) : 1979 - 1986
  • [4] Domination problems for strictly singular operators and other related classes
    Julio Flores
    Francisco L. Hernández
    Pedro Tradacete
    Positivity, 2011, 15 : 595 - 616
  • [5] Domination problems for strictly singular operators and other related classes
    Flores, Julio
    Hernandez, Francisco L.
    Tradacete, Pedro
    POSITIVITY, 2011, 15 (04) : 595 - 616
  • [6] Some Remarks on Disjointly Strictly Singular Positive Operators
    Julio Flores
    Positivity, 2005, 9 : 385 - 396
  • [7] Some remarks on disjointly strictly singular positive operators
    Flores, J
    POSITIVITY, 2005, 9 (03) : 385 - 396
  • [8] STRICTLY SINGULAR OPERATORS
    VANDULST, D
    COMPOSITIO MATHEMATICA, 1971, 23 (02) : 169 - &
  • [9] Invariant subspaces of positive strictly singular operators on Banach lattices
    Flores, Julio
    Tradacete, Pedro
    Troitsky, Vladimir G.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 343 (02) : 743 - 751
  • [10] ON STRICTLY SINGULAR AND STRICTLY COSINGULAR OPERATORS .I. STRICTLY SINGULAR AND STRICTLY COSINGULAR OPERATORS IN C(S)-SPACES
    PELCZYNS.A
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1965, 13 (01): : 31 - &