Existence of large solutions for a class of quasilinear elliptic equations

被引:7
|
作者
Yuan, Junli [1 ]
Yang, Zuodong [1 ,2 ]
机构
[1] Nanjing Normal Univ, Sch Math & Comp Sci, Jiangsu Nanjing 210097, Peoples R China
[2] Nanjing Normal Univ, Coll Zhongbei, Jiangsu Nanjing 210046, Peoples R China
基金
中国国家自然科学基金;
关键词
entire solution; large solution; quasilinear elliptic equation;
D O I
10.1016/j.amc.2007.12.050
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the quasilinear elliptic equation div(vertical bar del u vertical bar(p-2)del u) = a(x) f(u), u >= 0 in Omega, where p > 1, a(x) >= 0, a(x) not equivalent to 0, a(x) is an element of C((Omega) over bar), and f is continuous and non-decreasing on [0, +infinity), satifies f(0) = 0, f(s) > 0 for s > 0 and the Keller-Osserman condition integral(+infinity)(1) [F(s)](-1/p) ds = +infinity, F(s) = integral(s)(0) f(t)dt. We establish conditions on the function a that are necessary and sufficient for the existence of positive solutions, bounded and unbounded, of the given equation. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:852 / 858
页数:7
相关论文
共 50 条