Multifunctional Zn-Al layered double hydroxides for surface-enhanced Raman scattering and surface-enhanced infrared absorption

被引:17
|
作者
Zhang, Yiyue [1 ]
Zhang, Liangjing [1 ]
Hu, Liang [1 ]
Huang, Shaolong [1 ]
Jin, Zhengyuan [1 ]
Zhang, Min [1 ]
Huang, Xiaoyong [2 ]
Lu, Jianguo [3 ]
Ruan, Shuangchen [1 ]
Zeng, Yu-Jia [1 ]
机构
[1] Shenzhen Univ, Coll Optoelect Engn, Shenzhen Key Lab Laser Engn, Shenzhen 518060, Peoples R China
[2] Taiyuan Univ Technol, Coll Phys & Optoelect, Taiyuan 030024, Shanxi, Peoples R China
[3] Zhejiang Univ, Sch Mat Sci & Engn, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
PHOTOCATALYTIC ACTIVITY; OXYGEN EVOLUTION; NANOPARTICLES; NANOSHEETS; MOLECULES; AU; NANOSTRUCTURES; HETEROJUNCTION; SPECTROSCOPY; FABRICATION;
D O I
10.1039/c8dt03807d
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Surface-enhanced Raman scattering (SERS) and surface-enhanced infrared absorption (SEIRA) are complementary techniques, and both provide fingerprint structural information on various materials with a high sensitivity. Herein, Zn-Al layered double hydroxides (LDHs) are proposed for the first time as highly sensitive and uniform substrates for both SERS and SEIRA. Zn-Al LDHs show a remarkable SERS effect with an enhancement factor (EF) as high as 1.637 x 10(4) by using 4-mercaptobenzoic acid (4-MBA) as the probe molecule, where the charge transfer and hydrogen bonds are believed to result in the SERS effect. Interestingly, Zn-Al LDHs also exhibit SEIRA by using 4-methoxybenzenethiol (4-MTP), where the resultant substrates possess excellent long-term stability. This study not only presents a facile route to fabricate LDH materials, but also provides a novel substrate that can be used in both SERS and SEIRA.
引用
收藏
页码:426 / 434
页数:9
相关论文
共 50 条
  • [1] Thymine on Silver Island Films: Surface-Enhanced Raman Scattering and Surface-Enhanced Infrared Absorption Studies
    Guo Hao
    Bi Li-heng
    Ding Li
    Mo Yu-jun
    [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2011, 31 (12) : 3273 - 3276
  • [2] Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption
    Le, Fei
    Brandl, Daniel W.
    Urzhumov, Yaroslav A.
    Wang, Hui
    Kundu, Janardan
    Halas, Naomi J.
    Aizpurua, Javier
    Nordlander, Peter
    [J]. ACS NANO, 2008, 2 (04) : 707 - 718
  • [3] Surface-Enhanced Raman Scattering
    Culha, Mustafa
    Lavrik, Nickolay
    Cullum, Brian M.
    Astilean, Simion
    [J]. JOURNAL OF NANOTECHNOLOGY, 2012, 2012
  • [4] Surface-Enhanced Raman Scattering and Surface-Enhanced Infrared Absorption by Plasmon Polaritons in Three-Dimensional Nanoparticle Supercrystals
    Mueller, Niclas S.
    Pfitzner, Emanuel
    Okamura, Yu
    Gordeev, Georgy
    Kusch, Patryk
    Lange, Holger
    Heberle, Joachim
    Schulz, Florian
    Reich, Stephanie
    [J]. ACS NANO, 2021, 15 (03) : 5523 - 5533
  • [5] Surface-enhanced Raman scattering
    Vo-Dinh, Tuan
    Yan, Fei
    [J]. Optical Chemical Sensors, 2006, 224 : 239 - 259
  • [6] Surface-enhanced Raman scattering
    Kneipp, Katrin
    [J]. PHYSICS TODAY, 2007, 60 (11) : 40 - 46
  • [7] Surface-enhanced Raman scattering
    Graham, Duncan
    van Duyne, Richard
    Ren, Bin
    [J]. ANALYST, 2016, 141 (17) : 4995 - 4995
  • [8] Surface-enhanced Raman scattering
    Campion, A
    Kambhampati, P
    [J]. CHEMICAL SOCIETY REVIEWS, 1998, 27 (04) : 241 - 250
  • [9] Surface-enhanced infrared absorption
    Li NanNan
    Zhang Han
    Wang JianFang
    [J]. SCIENTIA SINICA-PHYSICA MECHANICA & ASTRONOMICA, 2019, 49 (12)
  • [10] Surface-enhanced infrared absorption
    Osawa, M
    [J]. NEAR-FIELD OPTICS AND SURFACE PLASMON POLARITONS, 2001, 81 : 163 - 187