Identification of nonlinear Wiener-Hammerstein systems by a novel adaptive algorithm based on cost function framework

被引:17
|
作者
Li, Linwei [1 ]
Ren, Xuemei [1 ]
机构
[1] Beijing Inst Technol, Sch Automat, 5 South Zhongguancun St, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Adaptive parameter identification; Wiener-Hammerstein; Filtering technique; Cost function; LEAST-SQUARES IDENTIFICATION; PARAMETER-ESTIMATION; DEAD-ZONE; RECURSIVE-IDENTIFICATION; LINEAR-APPROXIMATION; CONVERGENCE ANALYSIS; AUXILIARY MODEL; PERFORMANCE; HYSTERESIS; BACKLASH;
D O I
10.1016/j.isatra.2018.07.015
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigates parameter identification of nonlinear Wiener-Hammerstein systems by using filter gain and novel cost function. Taking into account the system information is corrupted by noise, the filter gain is exploited to extract the system data. By using several auxiliary filtered variables, an extended estimation error vector is developed. Then, based on the discount term of the extended estimation error and the penalty term on the initial estimate, a novel cost function is developed to obtain the optimal parameter adaptive law. Compared with the conventional cost function which is composed of the square sum of output error, the proposed algorithm based on the cost function of this paper can provide faster convergence rate and higher estimation accuracy. Furthermore, the convergence analysis of the proposed scheme indicates that the parameter estimation error can converge to zero. The effectiveness and practicality of the proposed scheme are validated through the simulation example and experiment on the turntable servo system.
引用
收藏
页码:146 / 159
页数:14
相关论文
共 50 条
  • [1] An identification algorithm for parallel Wiener-Hammerstein systems
    Schoukens, M.
    Vandersteen, G.
    Roain, Y.
    [J]. 2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, : 4907 - 4912
  • [2] Identification of Wiener-Hammerstein nonlinear systems with backlash operators
    Brouri, Adil
    Oubouaddi, Hafid
    Ouannou, Abdelmalek
    Bouklata, Ali
    Giri, Fouad
    Chaoui, Fatima-Zahra
    [J]. INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL, 2024, 12 (10) : 3733 - 3753
  • [3] Adaptive filtering scheme for parameter identification of nonlinear Wiener-Hammerstein systems and its application
    Li, Linwei
    Ren, Xuemei
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2020, 93 (10) : 2490 - 2504
  • [4] Identification of Parallel Wiener-Hammerstein Systems
    Brouri, A.
    Ouannou, A.
    Giri, F.
    Oubouaddi, H.
    Chaoui, F.
    [J]. IFAC PAPERSONLINE, 2022, 55 (12): : 25 - 30
  • [5] RECURSIVE IDENTIFICATION OF WIENER-HAMMERSTEIN SYSTEMS
    Mu, Bi-Qiang
    Chen, Han-Fu
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2012, 50 (05) : 2621 - 2658
  • [6] Binary-Valued Identification of Nonlinear Wiener-Hammerstein Systems Using Adaptive Scheme
    Li, Linwei
    Zhang, Jie
    Wang, Fengxian
    Zhang, Huanlong
    Ren, Xuemei
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [7] Wiener-Hammerstein systems and harmonic identification
    Baratchart, Laurent
    Caenepeel, Matthias
    Rolain, Yves
    [J]. 2015 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2015, : 612 - 617
  • [8] Coherence function of wiener-hammerstein systems
    Dobrowiecki, TP
    [J]. BEC 2002: PROCEEDINGS OF THE 8TH BIENNIAL BALTIC ELECTRONIC CONFERENCE, 2002, : 145 - 148
  • [9] An identification procedure for nonlinear systems characterized by wiener-hammerstein models
    Hu, Po
    [J]. Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2009, 37 (09): : 1907 - 1912
  • [10] Parametric identification of parallel Wiener-Hammerstein systems
    Schoukens, Maarten
    Marconato, Anna
    Pintelon, Rik
    Vandersteen, Gerd
    Rolain, Yves
    [J]. AUTOMATICA, 2015, 51 : 111 - 122