Co-accelerated particles in the C-metric

被引:17
|
作者
Pravda, V [1 ]
Pravdová, A [1 ]
机构
[1] Acad Sci Prague, Inst Math, Zitna 25, Prague 11567 1, Czech Republic
关键词
D O I
10.1088/0264-9381/18/7/305
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
With appropriately chosen parameters, the C-metric represents two uniformly accelerated black holes moving in the opposite directions on the axis of the axial symmetry (the z-axis). The acceleration is caused by nodal singularities located on the z-axis. In the present paper, geodesics in the C-metric are examined. In general, there exist three types of timelike or null geodesics in the C-metric: geodesics describing particles (a) falling under the black hole horizon; (b) crossing the acceleration horizon; and (c) orbiting around the z-axis and co-accelerating with the black holes. Using an effective potential, it can be shown that there exist stable timelike geodesics of the third type if the product of the parameters of the C-metric, mA, is smaller than a certain critical value. Null geodesics of the third type are always unstable. Special timelike and null geodesics of the third type are also found in an analytical form.
引用
收藏
页码:1205 / 1216
页数:12
相关论文
共 50 条
  • [1] Massless Dirac particles in the vacuum C-metric
    Bini, Donato
    Bittencourt, Eduardo
    Geralico, Andrea
    CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (21)
  • [2] Interpreting the C-metric
    Griffiths, J. B.
    Krtous, P.
    Podolsky, J.
    CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (23) : 6745 - 6766
  • [3] INTERIOR C-METRIC
    FARHOOSH, H
    ZIMMERMAN, RL
    PHYSICAL REVIEW D, 1981, 23 (02): : 299 - 304
  • [4] GENERALIZED C-METRIC
    ERNST, FJ
    JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (09) : 1986 - 1987
  • [5] Null limits of the C-metric
    Podolsky, J
    Griffiths, JB
    GENERAL RELATIVITY AND GRAVITATION, 2001, 33 (01) : 59 - 64
  • [6] Null Limits of the C-Metric
    J. Podolský
    J. B. Griffiths
    General Relativity and Gravitation, 2001, 33 : 59 - 64
  • [7] Properties of C-Metric Spaces
    Croitoru, Anca
    Apreutesei, Gabriela
    Mastorakis, Nikos E.
    MATHEMATICAL METHODS & COMPUTATIONAL TECHNIQUES IN SCIENCE & ENGINEERING, 2017, 1872
  • [8] THE C-METRIC IN BONDIS COORDINATES
    BONNOR, WB
    CLASSICAL AND QUANTUM GRAVITY, 1990, 7 (10) : L229 - L230
  • [9] Asymptotic properties of the C-metric
    Sladek, P.
    Finley, J. D., III
    CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (20)
  • [10] STATIONARY CHARGED C-METRIC
    FARHOOSH, H
    ZIMMERMAN, RL
    JOURNAL OF MATHEMATICAL PHYSICS, 1979, 20 (11) : 2272 - 2279