Combining SO-PLS and linear discriminant analysis for multi-block classification

被引:68
|
作者
Biancolillo, Alessandra [1 ,2 ]
Mage, Ingrid [1 ]
Naes, Tormod [1 ,2 ]
机构
[1] Nofima AS, N-1431 As, Norway
[2] Univ Copenhagen, Fac Life Sci, Dept Food Sci, DK-1958 Frederiksberg C, Denmark
关键词
SO-PLS; Multiblock; Linear discriminant analysis; Regression; Classification; PARTIAL LEAST-SQUARES; DATA BLOCKS; REGRESSION; MODELS;
D O I
10.1016/j.chemolab.2014.12.001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The aim of the present work is to extend the Sequentially Orthogonalized-Partial Least Squares (SO-PLS) regression method, usually used for continuous output, to situations where classification is the main purpose. For this reason SO-PLS discriminant analysis will be compared with other commonly used techniques such as Partial Least Squares-Discriminant Analysis (PLS-DA) and Multiblock-Partial Least Squares Discriminant Analysis (MB-PLS-DA). In particular we will focus on how multiblock strategies can give better discrimination than by analyzing the individual blocks. We will also show that SO-PLS discriminant analysis yields some valuable interpretation tools that give additional insight into the data. We will introduce some new ways to represent the information, taking into account both interpretation and predictive aspects. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:58 / 67
页数:10
相关论文
共 50 条
  • [1] PROSAC as a selection tool for SO-PLS regression: A strategy for multi-block data fusion
    Diaz-Olivares, Jose A.
    Bendoula, Ryad
    Saeys, Wouter
    Ryckewaert, Maxime
    Adriaens, Ines
    Fu, Xinyue
    Pastell, Matti
    Roger, Jean-Michel
    Aernouts, Ben
    ANALYTICA CHIMICA ACTA, 2024, 1319
  • [2] Multi-block SO-PLS approach based on infrared spectroscopy for anaerobic digestion process monitoring
    Awhangbo, L.
    Bendoula, R.
    Roger, J. M.
    Beline, F.
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2020, 196 (196)
  • [3] Multi-block PLS discriminant analysis for the joint analysis of metabolomic and epidemiological data
    Marion Brandolini-Bunlon
    Mélanie Pétéra
    Pierrette Gaudreau
    Blandine Comte
    Stéphanie Bougeard
    Estelle Pujos-Guillot
    Metabolomics, 2019, 15
  • [4] Multi-block PLS discriminant analysis for the joint analysis of metabolomic and epidemiological data
    Brandolini-Bunlon, Marion
    Petera, Melanie
    Gaudreau, Pierrette
    Comte, Blandine
    Bougeard, Stephanie
    Pujos-Guillot, Estelle
    METABOLOMICS, 2019, 15 (10)
  • [5] Extension of SO-PLS to multi-way arrays: SO-N-PLS
    Biancolillo, Alessandra
    Naes, Tormod
    Bro, Rasmus
    Mage, Ingrid
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2017, 164 : 113 - 126
  • [6] Sensory analysis via multi-block multivariate additive PLS splines
    Lombardo, Rosaria
    Amenta, Pietro
    Vivien, Myrtille
    Sabatier, Robert
    JOURNAL OF APPLIED STATISTICS, 2012, 39 (04) : 731 - 743
  • [7] Adaptive Sparse Multi-Block PLS Discriminant Analysis: An Integrative Method for Identifying Key Biomarkers from Multi-Omics Data
    Zhang, Runzhi
    Datta, Susmita
    GENES, 2023, 14 (05)
  • [8] OPLS discriminant analysis:: combining the strengths of PLS-DA and SIMCA classification
    Bylesjo, Max
    Rantalainen, Mattias
    Cloarec, Olivier
    Nicholson, Jeremy K.
    Holmes, Elaine
    Trygg, Johan
    JOURNAL OF CHEMOMETRICS, 2006, 20 (8-10) : 341 - 351
  • [9] Weighting multi-block two-dimensional linear discriminant features for face verification
    Wang, Jian-Gang
    Sung, Eric
    Yau, Wei-Yun
    2007 6TH INTERNATIONAL CONFERENCE ON INFORMATION, COMMUNICATIONS & SIGNAL PROCESSING, VOLS 1-4, 2007, : 131 - +
  • [10] A recursive multi-block PLS algorithm for monitoring industrial processes
    Wang, X
    Kruger, U
    Leung, AYT
    Lennox, B
    NEW TECHNOLOGIES FOR COMPUTER CONTROL 2001, 2002, : 275 - 280