The characteristics of a sorption-enhanced steam-methane reaction for the production of hydrogen using CO2 sorbent

被引:0
|
作者
Wu, SF [1 ]
Beum, TH
Yang, JI
Kim, JN
机构
[1] Zhengzhou Univ, Dept Chem Engn, Hangzhou 310027, Peoples R China
[2] Korea Inst Energy Res, Separat Proc Res Ctr, Taejon 305343, South Korea
关键词
hydrogen; reactive-adsorption; calcium hydroxide; steam-methane reforming;
D O I
暂无
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The objective of the present study is to characterize the production of hydrogen with a sorption-enhanced steam-methane reaction process using Ca(OH)(2) as the CO2 adsorbent. Theoretical equilibrium compositions at different operation conditions were calculated using an iterative method. It was found that with Ca(OH)(2) as the CO2 sorbent, the concentration of CO2 adsorption was reduced in the product stream, that gave rise to higher methane conversion and higher H-2 concentration. An experimental setup was built to test the theoretical calculation. The effects of sorbents and the particle size of Ca(OH)(2) on the concentration of CO2 and H-2 were investigated in detail. Results showed that the reactor packed with catalyst and Ca(OH)2 particles produced H-2 concentration of 94%. It was nearly 96% of the theoretical equilibrium limit, much higher than H-2 equilibrium concentration of 67.5% without CO2 sorption under the same conditions of 500 degrees C, 0.2 MPa pressure and a steam-to-methane ratio 6. In addition, the residual mole fraction of CO2 was less than 0.001.
引用
收藏
页码:43 / 47
页数:5
相关论文
共 50 条
  • [2] The Characteristics of a Sorption-enhanced Steam-Methane Reaction for the Production of Hydrogen Using CO2 Sorbent
    吴素芳
    T.H.Beum
    J.I.Yang
    J.N.Kim
    Chinese Journal of Chemical Engineering, 2005, (01) : 49 - 53
  • [3] Hydrotalcite as CO2 sorbent for sorption-enhanced steam reforming of methane
    Reijers, HTJ
    Valster-Schiermeier, SEA
    Cobden, PD
    van den Brink, RW
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2006, 45 (08) : 2522 - 2530
  • [4] Modeling Study of the Sorption-Enhanced Reaction Process for CO2 Capture. II. Application to Steam-Methane Reforming
    Reijers, Hendricus Th. J.
    Boon, Jurriaan
    Elzinga, Gerard D.
    Cobden, Paul D.
    Haije, Wim G.
    van den Brink, Ruud W.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2009, 48 (15) : 6975 - 6982
  • [5] Hydrogen production through CO2 sorption-enhanced methane steam reforming: Comparison between different adsorbents
    YuMing Chen
    YongChun Zhao
    JunYing Zhang
    ChuGuang Zheng
    Science China Technological Sciences, 2011, 54 : 2999 - 3008
  • [7] Hydrogen production through CO2 sorption-enhanced methane steam reforming: Comparison between different adsorbents
    Chen YuMing
    Zhao YongChun
    Zhang JunYing
    Zheng ChuGuang
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2011, 54 (11) : 2999 - 3008
  • [8] Hydrogen production by sorption-enhanced steam methane reforming using lithium oxides as CO2-acceptor
    Rusten, Hans Kristian
    Ochoa-Fernandez, Esther
    Lindborg, Havard
    Chen, De
    Jakobsen, Hugo A.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2007, 46 (25) : 8729 - 8737
  • [9] Novel thermal-swing sorption-enhanced reaction process concept for hydrogen production by low-temperature steam-methane reforming
    Lee, Ki Bong
    Beaver, Michael G.
    Caram, Hugo S.
    Sircar, Shivaji
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2007, 46 (14) : 5003 - 5014
  • [10] Hydrogen production using sorption-enhanced reaction
    Ortiz, AL
    Harrison, DP
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2001, 40 (23) : 5102 - 5109