Locally adequate semigroup algebras

被引:9
|
作者
Ji, Yingdan [1 ]
Luo, Yanfeng [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
来源
OPEN MATHEMATICS | 2016年 / 14卷
基金
中国国家自然科学基金;
关键词
Contracted semigroup algebras; Rukolaine idempotents; Multiplicative basis; Direct product decomposition; Representation type; NATURAL PARTIAL ORDER; ABUNDANT SEMIGROUPS; RINGS; MONOIDS;
D O I
10.1515/math-2016-0004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We build up a multiplicative basis for a locally adequate concordant semigroup algebra by constructing Rukolaine idempotents. This allows us to decompose the locally adequate concordant semigroup algebra into a direct product of primitive abundant 0-J*-simple semigroup algebras. We also deduce a direct sum decomposition of this semigroup algebra in terms of the R*-classes of the semigroup obtained from the above multiplicative basis. Finally, for some special cases, we provide a description of the projective indecomposable modules and determine the representation type.
引用
收藏
页码:29 / 48
页数:20
相关论文
共 50 条