共 2 条
Boosting H2 Generation Coupled with Selective Oxidation of Methanol into Value-Added Chemical over Cobalt Hydroxide@Hydroxysulfide Nanosheets Electrocatalysts
被引:236
|作者:
Xiang, Kun
[1
,2
]
Wu, Dan
[1
]
Deng, Xiaohui
[1
]
Li, Mei
[1
]
Chen, Shanyong
[3
]
Hao, Panpan
[3
]
Guo, Xuefeng
[3
]
Luo, Jing-Li
[1
,4
]
Fu, Xian-Zhu
[1
]
机构:
[1] Shenzhen Univ, Coll Mat Sci & Engn, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Coll Optoelect Engn, Minist Educ & Guangdong Prov, Key Lab Optoelect Devices & Syst, Shenzhen 518060, Peoples R China
[3] Nanjing Univ, Sch Chem & Chem Engn, Key Lab Mesoscop Chem, Nanjing 210023, Peoples R China
[4] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 1H9, Canada
基金:
中国国家自然科学基金;
中国博士后科学基金;
关键词:
cobalt hydroxide@hydroxysulfide;
coelectrolysis;
formate;
hydrogen evolution;
methanol;
OXYGEN EVOLUTION REACTION;
HYDROGEN-PRODUCTION;
NI FOAM;
WATER;
EFFICIENT;
ARRAYS;
STRATEGY;
SUPERIOR;
D O I:
10.1002/adfm.201909610
中图分类号:
O6 [化学];
学科分类号:
0703 ;
摘要:
The sluggish kinetics of oxygen evolution reaction (OER) is the main bottleneck for the electrocatalytic water splitting to produce hydrogen (H-2), and the by-product is worthless O-2. Therefore, designing a thermodynamically favorable oxidation reaction to replace OER and coupling with value-added product generation on the anode is of significance for boosting H-2 generation under low electrolysis voltage. Herein, cobalt hydroxide@hydroxysulfide nanosheets on carbon paper (Co(OH)(2)@HOS/CP) are synthesized as bifunctional electrocatalysts to facilitate H-2 production and convert methanol to valuable formate simultaneously. Benefiting from the influences/changes on the composition, surface properties, electronic structure, and chemistry of Co(OH)(2), the as-obtained electrodes exhibit very high selectivity for methanol to value-added formate oxidation (MFO) and boost electrocatalytic performance with low overpotential of 155 mV for MFO and 148 mV for hydrogen evolution reaction at a current density of 10 mA cm(-2). Furthermore, the integrated two-electrode electrolyzer drives 10 mA cm(-2) at a cell voltage of 1.497 V with united 100% Faradaic efficiency for anodic and cathodic reaction and continuous 20 h of operation without obvious decay. The electrocatalytic hydrogen production with the assistance of alternative oxidation by the robust electrocatalyst can be further used to realize the upgrading of other organic molecules with less energy consumption.
引用
收藏
页数:10
相关论文