LIC-Fusion: LiDAR-Inertial-Camera Odometry

被引:0
|
作者
Zuo, Xingxing [1 ]
Geneva, Patrick [3 ]
Lee, Woosik [2 ]
Liu, Yong [1 ]
Huang, Guoquan [2 ]
机构
[1] Zhejiang Univ, Inst Cyber Syst & Control, Hangzhou, Peoples R China
[2] Univ Delaware, Dept Mech Engn, Newark, DE 19716 USA
[3] Univ Delaware, Dept Comp & Informat Sci, Newark, DE 19716 USA
基金
中国国家自然科学基金;
关键词
ROBUST;
D O I
10.1109/iros40897.2019.8967746
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a tightly-coupled multi-sensor fusion algorithm termed LiDAR-inertial-camera fusion (LIC-Fusion), which efficiently fuses IMU measurements, sparse visual features, and extracted LiDAR points. In particular, the proposed LIC-Fusion performs online spatial and temporal sensor calibration between all three asynchronous sensors, in order to compensate for possible calibration variations. The key contribution is the optimal (up to linearization errors) multimodal sensor fusion of detected and tracked sparse edge/surf feature points from LiDAR scans within an efficient MSCKF-based framework, alongside sparse visual feature observations and IMU readings. We perform extensive experiments in both indoor and outdoor environments, showing that the proposed LIC-Fusion outperforms the state-of-the-art visual-inertial odometry (VIO) and LiDAR odometry methods in terms of estimation accuracy and robustness to aggressive motions.
引用
收藏
页码:5848 / 5854
页数:7
相关论文
共 50 条
  • [1] LIC-Fusion 2.0: LiDAR-Inertial-Camera Odometry with Sliding-Window Plane-Feature Tracking
    Zuo, Xingxing
    Yang, Yulin
    Geneva, Patrick
    Lv, Jiajun
    Liu, Yong
    Huang, Guoquan
    Pollefeys, Marc
    2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 5112 - 5119
  • [2] Coco-LIC: Continuous-Time Tightly-Coupled LiDAR-Inertial-Camera Odometry Using Non-Uniform B-Spline
    Lang, Xiaolei
    Chen, Chao
    Tang, Kai
    Ma, Yukai
    Lv, Jiajun
    Liu, Yong
    Zuo, Xingxing
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (11) : 7074 - 7081
  • [3] USTC FLICAR: A sensors fusion dataset of LiDAR-inertial-camera for heavy-duty autonomous aerial work robots
    Wang, Ziming
    Liu, Yujiang
    Duan, Yifan
    Li, Xingchen
    Zhang, Xinran
    Ji, Jianmin
    Dong, Erbao
    Zhang, Yanyong
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2023, 42 (11): : 1015 - 1047
  • [4] Continuous-Time Fixed-Lag Smoothing for LiDAR-Inertial-Camera SLAM
    Lv, Jiajun
    Lang, Xiaolei
    Xu, Jinhong
    Wang, Mengmeng
    Liu, Yong
    Zuo, Xingxing
    arXiv, 2023,
  • [5] Continuous-Time Fixed-Lag Smoothing for LiDAR-Inertial-Camera SLAM
    Lv, Jiajun
    Lang, Xiaolei
    Xu, Jinhong
    Wang, Mengmeng
    Liu, Yong
    Zuo, Xingxing
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2023, 28 (04) : 2259 - 2270
  • [6] LIO-Fusion: Reinforced LiDAR Inertial Odometry by Effective Fusion With GNSS/Relocalization and Wheel Odometry
    Wu, Wenhong
    Zhong, Xunyu
    Wu, Dongjie
    Chen, Bushi
    Zhong, Xungao
    Liu, Qiang
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (03) : 1571 - 1578
  • [7] Automatic Recalibration of Camera and LiDAR Using Sensor Fusion Odometry
    基于传感器融合里程计的相机与激光雷达自动重标定方法
    Yin, Guodong (ygd@seu.edu.cn), 1600, Chinese Mechanical Engineering Society (57): : 206 - 214
  • [8] LiDAR-Camera Fusion for Depth Enhanced Unsupervised Odometry
    Fetic, Naida
    Aydemir, Eren
    Unel, Mustafa
    2022 IEEE 95TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-SPRING), 2022,
  • [9] LiDAR and Camera Calibration using Motions Estimated by Sensor Fusion Odometry
    Ishikawa, Ryoichi
    Oishi, Takeshi
    Ikeuchi, Katsushi
    2018 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2018, : 7342 - 7349
  • [10] TransFusionOdom: Transformer-Based LiDAR-Inertial Fusion Odometry Estimation
    Sun, Leyuan
    Ding, Guanqun
    Qiu, Yue
    Yoshiyasu, Yusuke
    Kanehiro, Fumio
    IEEE SENSORS JOURNAL, 2023, 23 (18) : 22064 - 22079