Reynolds-number-dependent scaling law for turbulent boundary layers

被引:0
|
作者
Buschmann, MH [1 ]
Gad-El-Hak, M [1 ]
机构
[1] Tech Univ Dresden, Inst Stromungsmech, D-8027 Dresden, Germany
关键词
turbulent boundary layer; mean velocity profile; asymptotic analysis;
D O I
暂无
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Based on an extension of the two-layer approach a compact function for the mean velocity profile of a turbulent boundary layer is presented. The profile shows an explicit dependence on the Karman number. It is applied succesfully to profiles over a large Reynolds number range.
引用
收藏
页码:5 / 10
页数:6
相关论文
共 50 条
  • [1] Reynolds Number Dependence, Scaling, and Dynamics of Turbulent Boundary Layers
    Klewicki, Joseph C.
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2010, 132 (09):
  • [2] Pressure statistics and their scaling in high-Reynolds-number turbulent boundary layers
    Tsuji, Y.
    Fransson, J. H. M.
    Alfredsson, P. H.
    Johansson, A. V.
    JOURNAL OF FLUID MECHANICS, 2007, 585 (1-40) : 1 - 40
  • [3] Reynolds stress in turbulent boundary layers at high Reynolds number
    Seo, J
    Castillo, L
    Johansson, TG
    Hangan, H
    JOURNAL OF TURBULENCE, 2004, 5
  • [4] Dynamics and scaling of particle streaks in high-Reynolds-number turbulent boundary layers
    Berk, Tim
    Coletti, Filippo
    JOURNAL OF FLUID MECHANICS, 2023, 975
  • [5] Reynolds-number-dependent turbulent inertia and onset of log region in pipe flows
    Chin, C.
    Philip, J.
    Klewicki, J.
    Ooi, A.
    Marusic, I.
    JOURNAL OF FLUID MECHANICS, 2014, 757 : 747 - 769
  • [6] Power-law velocity profile in turbulent boundary layers: An integral reynolds-number dependent solution
    Castro-Orgaz, Oscar
    Dey, Subhasish
    ACTA GEOPHYSICA, 2011, 59 (05) : 993 - 1012
  • [7] Power-law velocity profile in turbulent boundary layers: An integral reynolds-number dependent solution
    Oscar Castro-Orgaz
    Subhasish Dey
    Acta Geophysica, 2011, 59 : 993 - 1012
  • [8] Low-Reynolds-number turbulent boundary layers
    Erm, Lincoln P., 1600, (230):
  • [9] Multiscale Geometry and Scaling of the Turbulent-Nonturbulent Interface in High Reynolds Number Boundary Layers
    de Silva, Charitha M.
    Philip, Jimmy
    Chauhan, Kapil
    Meneveau, Charles
    Marusic, Ivan
    PHYSICAL REVIEW LETTERS, 2013, 111 (04)
  • [10] Assessment of Reynolds number effects in supersonic turbulent boundary layers
    Laguarda, L.
    Hickel, S.
    Schrijer, F. F. J.
    van Oudheusden, B. W.
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2024, 105