Limitations of Ensemble Bayesian Model Averaging for forecasting social science problems

被引:29
|
作者
Graefe, Andreas [1 ]
Kuechenhoff, Helmut [2 ]
Stierle, Veronika [2 ]
Riedl, Bernhard [2 ]
机构
[1] Ludwig Maximilians Univ Munchen, Dept Commun Sci & Media Res, Munich, Germany
[2] Ludwig Maximilians Univ Munchen, Inst Stat, Munich, Germany
关键词
Bayesian analysis; Combining forecasts; Economic forecasting; Election forecasting; Equal weights; PRESIDENTIAL VOTE; ELECTIONS;
D O I
10.1016/j.ijforecast.2014.12.001
中图分类号
F [经济];
学科分类号
02 ;
摘要
We compare the accuracies of simple unweighted averages and Ensemble Bayesian Model Averaging (EBMA) for combining forecasts in the social sciences. A review of prior studies from the domain of economic forecasting finds that the simple average was more accurate than EBMA in four studies out of five. On average, the error of EBMA was 5% higher than that of the simple average. A reanalysis and extension of a published study provides further evidence for US presidential election forecasting. The error of EBMA was 33% higher than the corresponding error of the simple average. Simple averages are easy both to describe and to understand, and thus are easy to use. In addition, simple averages provide accurate forecasts in many settings. Researchers who are developing new approaches to combining forecasts need to compare the accuracy of their method to this widely established benchmark. Forecasting practitioners should favor simple averages over more complex methods unless there is strong evidence in support of differential weights. (C) 2014 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:943 / 951
页数:9
相关论文
共 50 条
  • [1] Combining the Bayesian processor of output with Bayesian model averaging for reliable ensemble forecasting
    Marty, R.
    Fortin, V.
    Kuswanto, H.
    Favre, A. -C.
    Parent, E.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2015, 64 (01) : 75 - 92
  • [2] Multivariate probabilistic forecasting using ensemble Bayesian model averaging and copulas
    Moeller, Annette
    Lenkoski, Alex
    Thorarinsdottir, Thordis L.
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2013, 139 (673) : 982 - 991
  • [3] Application of Bayesian Model Averaging Approach to Multimodel Ensemble Hydrologic Forecasting
    Liang, Zhongmin
    Wang, Dong
    Guo, Yan
    Zhang, Yu
    Dai, Rong
    JOURNAL OF HYDROLOGIC ENGINEERING, 2013, 18 (11) : 1426 - 1436
  • [4] Forecasting of monthly precipitation based on ensemble empirical mode decomposition and Bayesian model averaging
    Luo, Shangxue
    Zhang, Meiling
    Nie, Yamei
    Jia, Xiaonan
    Cao, Ruihong
    Zhu, Meiting
    Li, Xiaojuan
    FRONTIERS IN EARTH SCIENCE, 2022, 10
  • [5] A hybrid wind power forecasting approach based on Bayesian model averaging and ensemble learning
    Wang, Gang
    Jia, Ru
    Liu, Jinhai
    Zhang, Huaguang
    RENEWABLE ENERGY, 2020, 145 : 2426 - 2434
  • [6] Ensemble Bayesian Model Averaging in Genetic Programming
    Agapitos, Alexandros
    O'Neill, Michael
    Brabazon, Anthony
    2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2014, : 2451 - 2458
  • [7] Forecasting US Inflation by Bayesian Model Averaging
    Wright, Jonathan H.
    JOURNAL OF FORECASTING, 2009, 28 (02) : 131 - 144
  • [8] Multi-Model Grand Ensemble Hydrologic Forecasting in the Fu River Basin Using Bayesian Model Averaging
    Qu, Bo
    Zhang, Xingnan
    Pappenberger, Florian
    Zhang, Tao
    Fang, Yuanhao
    WATER, 2017, 9 (02)
  • [9] Probabilistic precipitation forecasting based on ensemble output using generalized additive models and Bayesian model averaging
    Chi Yang
    Zhongwei Yan
    Yuehong Shao
    Acta Meteorologica Sinica, 2012, 26 : 1 - 12
  • [10] Improving Predictions Using Ensemble Bayesian Model Averaging
    Montgomery, Jacob M.
    Hollenbach, Florian M.
    Ward, Michael D.
    POLITICAL ANALYSIS, 2012, 20 (03) : 271 - 291