Analytical and experimental studies on active suspension system of light passenger vehicle to improve ride comfort

被引:0
|
作者
Kumar, M. Senthil [1 ]
Vijayarangan, S. [2 ]
机构
[1] PSG Coll Technol, Fac Mech Engn, Coimbatore 641004, Tamil Nadu, India
[2] Dr Mahalingam Coll Engn & Technol, Fac Mech Engn, Pollachi 642103, Tamil Nadu, India
来源
MECHANIKA | 2007年 / 65卷 / 03期
关键词
D O I
暂无
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This paper describes the development of active suspension system of light passenger vehicle to improve ride comfort of the passengers using PID (Proportional Integral - Derivative) controller. The system is subjected to bumpy road and its performance is assessed and compared with a passive suspension system. Tuning of the controller parameters is also illustrated. Experimental verification of analytical results is carried out. It is found that ride comfort is improved by 78.03%, suspension travel has been reduced by 71.05% and road holding ability is improved by 60% with active suspension system when compared with passive suspension system. Therefore it is concluded that active suspension system with PID controller is superior to passive suspension system.
引用
下载
收藏
页码:34 / 41
页数:8
相关论文
共 50 条
  • [1] Analytical Design of PID Controller for Enhancing Ride Comfort of Active Vehicle Suspension System
    Truong Nguyen Luan Vu
    Do Van Dung
    Nguyen Van Trang
    Phan Tan Hai
    2017 INTERNATIONAL CONFERENCE ON SYSTEM SCIENCE AND ENGINEERING (ICSSE), 2017, : 305 - 308
  • [2] Ride Comfort Performance of Electric Vehicle Conversion with Active Suspension System
    Abu Bakar, Saiful Anuar
    Masuda, Ryosuke
    Hashimoto, Hiromu
    Inaba, Takeshi
    Jamaluddin, Hishamuddin
    Abd Rahman, Roslan
    Samin, Pakharuddin Mohd
    2012 PROCEEDINGS OF SICE ANNUAL CONFERENCE (SICE), 2012, : 1980 - 1984
  • [3] Influence of Vehicle Suspension System on Ride Comfort
    Xia, Junzhong
    Ma, Zongpo
    Li, Shumin
    An, Xiangbi
    FUNCTIONAL MANUFACTURING AND MECHANICAL DYNAMICS II, 2012, 141 : 319 - 322
  • [4] Vehicle Ride Comfort Based on Matching Suspension System
    Shi Jianpeng
    CHINESE JOURNAL OF MECHANICAL ENGINEERING, 2011, 24 (02) : 271 - 276
  • [5] Vehicle Ride Comfort Based on Matching Suspension System
    SHI Jianpeng~(1
    Chinese Journal of Mechanical Engineering, 2011, 24 (02) : 271 - 276
  • [6] Active suspension control to improve vehicle ride and handling
    Williams, DE
    Haddad, WM
    VEHICLE SYSTEM DYNAMICS, 1997, 28 (01) : 1 - 24
  • [7] Transient Analysis of a Hydraulically Interconnected Suspension System for Mining Vehicle with Leaf Spring Suspension to Improve Ride Comfort
    Zhang, Jie
    Wang, Li-Fu
    Zhang, Bang-Ji
    Zhang, Nong
    INTERNATIONAL CONFERENCE ON MECHANISM SCIENCE AND CONTROL ENGINEERING (MSCE 2014), 2014, : 35 - 40
  • [8] Wheelbase preview control of an active suspension with a disturbance-decoupled observer to improve vehicle ride comfort
    Kwon, Baek-soon
    Kang, Daejun
    Yi, Kyongsu
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2020, 234 (06) : 1725 - 1745
  • [9] Gain-scheduling H∞ control to improve ride comfort and driving stability of vehicle active suspension
    School of Science for Open and Environmental System, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama
    223-8522, Japan
    不详
    223-8522, Japan
    MOVIC - Int. Conf. Motion Vib. Control, Proc.,
  • [10] The research of vehicle's ride comfort in the nonlinear suspension system
    Chen Zhengke
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON EDUCATION, MANAGEMENT, INFORMATION AND MEDICINE (EMIM 2015), 2015, 8 : 1392 - 1397