Active Learning Approach for Detection of Hard Exudates, Cotton Wool Spots and Drusen in Retinal Images

被引:2
|
作者
Sanchez, Clara, I [1 ]
Niemeijer, Meindert [2 ,3 ]
Kockelkorn, Thessa [1 ]
Abramoff, Michael D. [2 ,3 ,4 ]
van Ginneken, Bram [1 ]
机构
[1] Univ Med Ctr Utrecht, Image Sci Inst, Utrecht, Netherlands
[2] Univ Iowa, Dept Elect & Comp Engn, Iowa City, IA 52242 USA
[3] Univ Iowa, Dept Ophthalmol & Visual Sci, Iowa City, IA USA
[4] Vet Affairs Med Ctr, Iowa City, IA 52242 USA
关键词
active learning; retinal images; uncertainty sampling; DIABETIC-RETINOPATHY;
D O I
10.1117/12.813679
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Computer-aided Diagnosis (CAD) systems for the automatic identification of abnormalities in retinal images are gaining importance in diabetic retinopathy screening programs. A huge amount of retinal images are collected during these programs and they provide a starting point for the design of machine learning algorithms. However, manual annotations of retinal images are scarce and expensive to obtain. This paper proposes a dynamic CAD system based on active learning for the automatic identification of hard exudates, cotton wool spots and drusen in retinal images. An uncertainty sampling method is applied to select samples that need to be labeled by an expert from an unlabeled set of 4000 retinal images. It reduces the number of training samples needed to obtain an optimum accuracy by dynamically selecting the most informative samples. Results show that the proposed method increases the classification accuracy compared to alternative techniques, achieving an area under the ROC curve of 0.87, 0.82 and 0.78 for the detection of hard exudates, cotton wool spots and drusen, respectively.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] DenseExudatesNet: a novel approach for hard exudates detection in retinal images using deep learning
    Pratheeba, C.
    Rufus, N. Calvin Jeba
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024,
  • [2] Detection and classification of hard exudates in retinal images
    Al Sariera, Thamer Mitib
    Rangarajan, Lalitha
    Amarnath, R.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 38 (02) : 1943 - 1949
  • [3] Detection of Hard Exudates in Retinal Fundus Images Using Deep Learning
    Benzamin, Avula
    Chakraborty, Chandan
    2018 JOINT 7TH INTERNATIONAL CONFERENCE ON INFORMATICS, ELECTRONICS & VISION (ICIEV) AND 2018 2ND INTERNATIONAL CONFERENCE ON IMAGING, VISION & PATTERN RECOGNITION (ICIVPR), 2018, : 465 - 469
  • [4] Automated detection and differentiation of drusen, exudates, and cotton-wool spots in digital color fundus photographs for diabetic retinopathy diagnosis
    Niemeijer, Meindert
    van Ginneken, Bram
    Russell, Stephen R.
    Suttorp-Schulten, Maria S. A.
    Abramoff, Michael D.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2007, 48 (05) : 2260 - 2267
  • [5] A deep learning approach to hard exudates detection and disorganization of retinal inner layers identification on OCT images
    Toto, Lisa
    Romano, Anna
    Pavan, Marco
    Degl'Innocenti, Dante
    Olivotto, Valentina
    Formenti, Federico
    Viggiano, Pasquale
    Midena, Edoardo
    Mastropasqua, Rodolfo
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [6] Hierarchical detection of hard exudates in color retinal images
    Bu, Wei
    Wu, Xiangqian
    Chen, Xiang
    Dai, Baisheng
    Zheng, Yalin
    Journal of Software, 2013, 8 (11) : 2723 - 2732
  • [7] PATHOGENESIS OF RETINAL COTTON WOOL SPOTS
    MCLEOD, D
    MARSHALL, J
    KOHNER, EM
    BIRD, AC
    CLINICAL SCIENCE AND MOLECULAR MEDICINE, 1976, 51 (03): : P7 - P8
  • [8] Automated detection of retinal exudates and drusen in ultra-widefield fundus images based on deep learning
    Zhongwen Li
    Chong Guo
    Danyao Nie
    Duoru Lin
    Tingxin Cui
    Yi Zhu
    Chuan Chen
    Lanqin Zhao
    Xulin Zhang
    Meimei Dongye
    Dongni Wang
    Fabao Xu
    Chenjin Jin
    Ping Zhang
    Yu Han
    Pisong Yan
    Haotian Lin
    Eye, 2022, 36 : 1681 - 1686
  • [9] Automated detection of retinal exudates and drusen in ultra-widefield fundus images based on deep learning
    Li, Zhongwen
    Guo, Chong
    Nie, Danyao
    Lin, Duoru
    Cui, Tingxin
    Zhu, Yi
    Chen, Chuan
    Zhao, Lanqin
    Zhang, Xulin
    Dongye, Meimei
    Wang, Dongni
    Xu, Fabao
    Jin, Chenjin
    Zhang, Ping
    Han, Yu
    Yan, Pisong
    Lin, Haotian
    EYE, 2022, 36 (08) : 1681 - 1686
  • [10] A BAG OF WORDS APPROACH FOR DISCRIMINATING BETWEEN RETINAL IMAGES CONTAINING EXUDATES OR DRUSEN
    van Grinsven, M. J. J. P.
    Chakravarty, A.
    Sivaswamy, J.
    Theelen, T.
    van Ginneken, B.
    Sanchez, C. I.
    2013 IEEE 10TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2013, : 1444 - 1447