A Hybrid Prediction Model Integrating GARCH Models With a Distribution Manipulation Strategy Based on LSTM Networks for Stock Market Volatility

被引:19
|
作者
Koo, Eunho [1 ]
Kim, Geonwoo [2 ]
机构
[1] Korea Inst Adv Study, Ctr AI & Nat Sci, Seoul 02455, South Korea
[2] Seoul Natl Univ Sci & Technol, Sch Liberal Arts, Seoul 01811, South Korea
来源
IEEE ACCESS | 2022年 / 10卷
基金
新加坡国家研究基金会;
关键词
Predictive models; Data models; Stock markets; Stochastic processes; Licenses; Task analysis; Recurrent neural networks; Stock market volatility; long short-term memory; GARCH models; distribution manipulation; NEURAL-NETWORKS; FORECASTING VOLATILITY; INDEX; RETURNS; FUTURES; TERM;
D O I
10.1109/ACCESS.2022.3163723
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurate prediction of volatility is one of the most important tasks in financial decision making. Recently, the hybrid models integrating artificial neural networks with GARCH-type models have been developed, and performance gains from the models have been found to be outstanding. However, there have been few studies of hybrid models considering the nature of the distribution of financial data. Distribution of volatility time-series is highly concentrated near zero, and such aspect can cause low prediction performance on the whole domain of probability density function because weights in the networks can be trained to obtain accurate prediction only for the high frequency region, that is, near zero. To overcome the challenge, we propose a new hybrid model with GARCH-type models based on a novel non-linear filtering method to mitigate concentration property of volatility. For the filtering, we utilize root-type functions that transform extremely left-biased and pointed distribution of original volatility to a volume-upped (VU) distribution shifted to the right. Long short-term memory (LSTM) is employed as the basic implementation model, and the realized volatility of S&P 500 is predicted using the proposed models. It is found that the proposed hybrid model (VU-GARCH-LSTM) obtains 21.03% performance gain with respect to the root mean square error (RMSE) against the mean performances of the existing hybrid models integrating LSTM with GARCH-type models. Furthermore, the proposed model improves prediction performance in the right domain region of label probability density by making the prediction distribution comparable to the label distribution.
引用
收藏
页码:34743 / 34754
页数:12
相关论文
共 50 条
  • [1] A Hybrid Prediction Model Integrating GARCH Models With a Distribution Manipulation Strategy Based on LSTM Networks for Stock Market Volatility
    Koo, Eunho
    Kim, Geonwoo
    IEEE Access, 2022, 10 : 34743 - 34754
  • [2] Forecasting the volatility of stock price index: A hybrid model integrating LSTM with multiple GARCH-type models
    Kim, Ha Young
    Won, Chang Hyun
    EXPERT SYSTEMS WITH APPLICATIONS, 2018, 103 : 25 - 37
  • [3] A hybrid deep learning approach by integrating LSTM-ANN networks with GARCH model for copper price volatility prediction
    Hu, Yan
    Ni, Jian
    Wen, Liu
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 557
  • [4] LSTM–GARCH Hybrid Model for the Prediction of Volatility in Cryptocurrency Portfolios
    Andrés García-Medina
    Ester Aguayo-Moreno
    Computational Economics, 2024, 63 : 1511 - 1542
  • [5] A HYBRID MODEL INTEGRATING LSTM AND GARCH FOR BITCOIN PRICE PREDICTION
    Gao, Zidi
    He, Yiwen
    Kuruoglu, Ercan Engin
    2021 IEEE 31ST INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2021,
  • [6] LSTM-GARCH Hybrid Model for the Prediction of Volatility in Cryptocurrency Portfolios
    Garcia-Medina, Andres
    Aguayo-Moreno, Ester
    COMPUTATIONAL ECONOMICS, 2024, 63 (04) : 1511 - 1542
  • [7] Volatility of pakistan stock market: A comparison of Garch type models with five distribution
    Naseem, Sobia
    Fu, Gao Lei
    Mohsin, Muhammad
    Zia-ur-Rehman, Muhammad
    Baig, Sajjad Ahmad
    AMAZONIA INVESTIGA, 2018, 7 (17): : 486 - 504
  • [8] A Study on the Volatility of the Bangladesh Stock Market——Based on GARCH Type Models
    Bhowmik RONI
    Chao WU
    Roy Kumar JEWEL
    Shouyang WANG
    JournalofSystemsScienceandInformation, 2017, 5 (03) : 193 - 215
  • [9] Volatility Research of Shanghai Stock Market Based on GARCH Model Family
    Iv, Donghui
    PROCEEDINGS OF THE 2017 2ND INTERNATIONAL CONFERENCE ON EDUCATION, SPORTS, ARTS AND MANAGEMENT ENGINEERING (ICESAME 2017), 2017, 123 : 2002 - 2007
  • [10] Forecasting the Volatility of CSI 300 Index with a Hybrid Model of LSTM and Multiple GARCH Models
    Tian, Bu
    Yan, Tianyu
    Yin, Hong
    COMPUTATIONAL ECONOMICS, 2024,