Compressing an Ensemble With Statistical Models: An Algorithm for Global 3D Spatio-Temporal Temperature

被引:32
|
作者
Castruccio, Stefano [1 ]
Genton, Marc G. [2 ]
机构
[1] Newcastle Univ, Sch Math & Stat, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[2] King Abdullah Univ Sci & Technol, CEMSE Div, Thuwal 239556900, Saudi Arabia
关键词
Big data; Distributed computing; Space-time statistics; Sphere; CLIMATE; PREDICTABILITY; LIKELIHOODS; SPACE;
D O I
10.1080/00401706.2015.1027068
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
One of the main challenges when working with modern climate model ensembles is the increasingly larger size of the data produced, and the consequent difficulty in storing large amounts of spatio-temporally resolved information. Many compression algorithms can be used to mitigate this problem, but since they are designed to compress generic scientific datasets, they do not account for the nature of climate model output and they compress only individual simulations. In this work, we propose a different, statistics-based approach that explicitly accounts for the space-time dependence of the data for annual global three-dimensional temperature fields in an initial condition ensemble. The set of estimated parameters is small (compared to the data size) and can be regarded as a summary of the essential structure of the ensemble output; therefore, it can be used to instantaneously reproduce the temperature fields in an ensemble with a substantial saving in storage and time. The statistical model exploits the gridded geometry of the data and parallelization across processors. It is therefore computationally convenient and allows to fit a nontrivial model to a dataset of 1 billion data points with a covariance matrix comprising of 10(18) entries. Supplementary materials for this article are available online.
引用
收藏
页码:319 / 328
页数:10
相关论文
共 50 条
  • [1] A 3D spatio-temporal motion estimation algorithm for video coding
    Lee, Gwo Giun
    Wang, Ming-Jiun
    Lin, He-Yuan
    Su, Drew Wei-Chi
    Lin, Bo-Yun
    2006 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO - ICME 2006, VOLS 1-5, PROCEEDINGS, 2006, : 741 - +
  • [2] Global and Local Spatio-Temporal Encoder for 3D Human Pose Estimation
    Wang, Yong
    Kang, Hongbo
    Wu, Doudou
    Yang, Wenming
    Zhang, Longbin
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 4039 - 4049
  • [3] In Vitro Spatio-Temporal NMR Metabolomics of Living 3D Cell Models
    Knitsch, Robert
    AlWahsh, Mohammad
    Raschke, Hannes
    Lambert, Joerg
    Hergenroeder, Roland
    ANALYTICAL CHEMISTRY, 2021, 93 (40) : 13485 - 13494
  • [4] A Spatio-Temporal 3D Representation of a Historic Dataset
    Papasarantou, Chrissa
    Kalaouzis, Giorgos
    Pentazou, Ioulia
    Bourdakis, Vassilis
    ECAADE 2015: REAL TIME - EXTENDING THE REACH OF COMPUTATION, VOL 1, 2015, : 701 - 708
  • [5] Spatio-Temporal Reconstruction for 3D Motion Recovery
    Yang, Jingyu
    Guo, Xin
    Li, Kun
    Wang, Meiyuan
    Lai, Yu-Kun
    Wu, Feng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2020, 30 (06) : 1583 - 1596
  • [6] Visual 3D querying of spatio-temporal data
    Sourina, Olga
    2006 INTERNATIONAL CONFERENCE ON CYBERWORLDS, PROCEEDINGS, 2006, : 147 - 153
  • [7] Spatio-temporal analysis and comparison of 3D videos
    Simone Cammarasana
    Giuseppe Patanè
    The Visual Computer, 2023, 39 : 1335 - 1350
  • [8] Spatio-temporal analysis and comparison of 3D videos
    Cammarasana, Simone
    Patane, Giuseppe
    VISUAL COMPUTER, 2023, 39 (04): : 1335 - 1350
  • [9] Spatio-temporal deep learning models of 3D turbulence with physics informed diagnostics
    Mohan, Arvind T.
    Tretiak, Dima
    Chertkov, Misha
    Livescu, Daniel
    JOURNAL OF TURBULENCE, 2020, 21 (9-10): : 484 - 524
  • [10] Detection of spatio-temporal conflicts on a temporal 3D space system
    Song, YB
    Chua, DKH
    ADVANCES IN ENGINEERING SOFTWARE, 2005, 36 (11-12) : 814 - 826