Bifurcations of Periodic Solutions and Chaos in Josephson System with Parametric Excitation

被引:2
|
作者
Yuan, Shao-liang [1 ]
Jing, Zhu-jun [1 ,2 ]
机构
[1] Yichun Univ, Coll Math & Comp Sci, Yichun 330013, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Ctr Dynam Syst, Beijing 100190, Peoples R China
来源
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES | 2015年 / 31卷 / 02期
基金
中国国家自然科学基金;
关键词
Josephson system; bifurcations; chaos; second-order averaging method; Melnikov method; JUNCTION CIRCUIT; DYNAMICS; PENDULUM; REGIONS; ORBITS;
D O I
10.1007/s10255-014-0447-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Josephson system with parametric excitation is investigated. Using second-order averaging method and Melnikov function, we analyze the existence and bifurcations for harmonic, (2, 3, n-order) subharmonics and (2, 3-order) superharmonics and the heterocilinic and homoclinic bifurcations for chaos under periodic perturbation. Using numerical simulation, we check our theoretical analysis and further study the effect of the parameters on dynamics. We find the complex dynamics, including the jumping behaviors, symmetry-breaking, chaos converting to periodic orbits, interior crisis, non-attracting chaotic set, interlocking (reverse) period-doubling bifurcations from periodic orbits, the processes from interlocking period-doubling bifurcations of periodic orbits to chaos after strange non-chaotic motions when the parameter beta increases, etc.
引用
收藏
页码:335 / 368
页数:34
相关论文
共 50 条