Zeta Functions of Group Based Graphs and Complexes

被引:0
|
作者
Li, Wen-Ching W. [1 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
FINITE GRAPHS; EIGENVALUES; COVERINGS; FIELDS; PGL(3);
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this survey article, we focus on graphs and complexes arising from quotients of the Bruhat-Tits buildings associated to PGL(2)(F) and PGL(3)(F), respectively. As such, the combinatorial objects, like vertices, edges and chambers, are parametrized algebraically by cosets, and the combinatorial adjacency operators can be interpreted as operators supported on suitable double cosets acting on certain L(2)-spaces. The algebraic structure provides links to group theory and number theory. We show interesting connections between combinatorics and number theory, mainly through zeta functions.
引用
收藏
页码:225 / 236
页数:12
相关论文
共 50 条
  • [1] Weighted zeta functions of graphs
    Mizuno, H
    Sato, I
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2004, 91 (02) : 169 - 183
  • [2] Zeta functions of quantum graphs
    Harrison, J. M.
    Kirsten, K.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (23)
  • [3] Convergence of zeta functions of graphs
    Clair, B
    Mokhtari-Sharghi, S
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (07) : 1881 - 1886
  • [4] Zeta functions from graphs
    Davis, Simon
    [J]. AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2018, 15 (02) : 224 - 228
  • [5] ZETA FUNCTIONS FOR KAHLER GRAPHS
    Tuerxunmaimaiti, Yaermaimaiti
    Adachi, Toshiaki
    [J]. KODAI MATHEMATICAL JOURNAL, 2018, 41 (02) : 227 - 239
  • [6] Zeta functions of signed graphs
    Li, Deqiong
    Hou, Yaoping
    Wang, Dijian
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2023,
  • [7] Zeta functions of weighted graphs and covering graphs
    Horton, Matthew D.
    Stark, H. M.
    Terras, Audrey A.
    [J]. ANALYSIS ON GRAPHS AND ITS APPLICATIONS, 2008, 77 : 29 - +
  • [8] Zeta functions of finite graphs and coverings
    Stark, HM
    Terras, AA
    [J]. ADVANCES IN MATHEMATICS, 1996, 121 (01) : 124 - 165
  • [9] Zeta functions of graphs with Z actions
    Clair, Bryan
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2009, 99 (01) : 48 - 61
  • [10] Deitmar schemes, graphs and zeta functions
    Merida-Angulo, Manuel
    Thas, Koen
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2017, 117 : 234 - 266