The backward euler anisotropic a posteriori error analysis for parabolic integro-differential equations

被引:3
|
作者
Reddy, Gujji Murali Mohan [1 ]
Sinha, Rajen Kumar [1 ]
机构
[1] Indian Inst Technol Guwahati, Dept Math, Gauhati 781039, India
关键词
parabolic integro-differential equations; finite element method; fully discrete scheme; optimal; anisotropic error estimator; FINITE-ELEMENT METHODS; ESTIMATOR; STABILITY;
D O I
10.1002/num.22049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive two optimal a posteriori error estimators for an implicit fully discrete approximation to the solutions of linear integro-differential equations of the parabolic type. A continuous, piecewise linear finite element space is used for the space discretization and the time discretization is based on an implicit backward Euler method. The a posteriori error indicator corresponding to space discretization is derived using the anisotropic interpolation estimates in conjunction with a Zienkiewicz-Zhu error estimator to approach the error gradient. The error due to time discretization is derived using continuous, piecewise linear polynomial in time. We use the linear approximation of the Volterra integral term to estimate the quadrature error in the second estimator. Numerical experiments are performed on the isotropic mesh to validate the derived results.(c) 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1309-1330, 2016
引用
收藏
页码:1309 / 1330
页数:22
相关论文
共 50 条
  • [1] ON THE CRANK-NICOLSON ANISOTROPIC A POSTERIORI ERROR ANALYSIS FOR PARABOLIC INTEGRO-DIFFERENTIAL EQUATIONS
    Reddy, G. Murali Mohan
    Sinha, Rajen K.
    MATHEMATICS OF COMPUTATION, 2016, 85 (301) : 2365 - 2390
  • [2] Anisotropic a Posteriori Error Analysis for the Two-Step Backward Differentiation Formula for Parabolic Integro-Differential Equation
    N Shravani
    G Murali Mohan Reddy
    A. K. Pani
    Journal of Scientific Computing, 2022, 93
  • [3] Anisotropic a Posteriori Error Analysis for the Two-Step Backward Differentiation Formula for Parabolic Integro-Differential Equation
    Shravani, N.
    Reddy, G. Murali Mohan
    Pani, A. K.
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 93 (01)
  • [4] Backward Euler type methods for parabolic integro-differential equations in Banach space
    Bakaev, NY
    Larsson, S
    Thomee, V
    RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1998, 32 (01): : 85 - 99
  • [5] A Posteriori Error Analysis of the Crank–Nicolson Finite Element Method for Parabolic Integro-Differential Equations
    G. Murali Mohan Reddy
    Rajen Kumar Sinha
    José Alberto Cuminato
    Journal of Scientific Computing, 2019, 79 : 414 - 441
  • [6] Sharp A Posteriori Error Estimates for Optimal Control Governed by Parabolic Integro-Differential Equations
    Wanfang Shen
    Liang Ge
    Danping Yang
    Wenbin Liu
    Journal of Scientific Computing, 2015, 65 : 1 - 33
  • [7] Sharp A Posteriori Error Estimates for Optimal Control Governed by Parabolic Integro-Differential Equations
    Shen, Wanfang
    Ge, Liang
    Yang, Danping
    Liu, Wenbin
    JOURNAL OF SCIENTIFIC COMPUTING, 2015, 65 (01) : 1 - 33
  • [8] A Posteriori Error Analysis of the Crank-Nicolson Finite Element Method for Parabolic Integro-Differential Equations
    Reddy, G. Murali Mohan
    Sinha, Rajen Kumar
    Cuminato, Jose Alberto
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 79 (01) : 414 - 441
  • [9] Fully discrete a posteriori error estimates for parabolic integro-differential equations using the two-step backward differentiation formula
    Reddy, G. Murali Mohan
    BIT NUMERICAL MATHEMATICS, 2022, 62 (01) : 251 - 277
  • [10] Fully discrete a posteriori error estimates for parabolic integro-differential equations using the two-step backward differentiation formula
    G. Murali Mohan Reddy
    BIT Numerical Mathematics, 2022, 62 : 251 - 277