P-doped 3D graphene network supporting uniformly vertical MoS2 nanosheets for enhanced hydrogen evolution reaction

被引:0
|
作者
Huang, Junying [1 ]
Chen, Mengting [1 ]
Zhang, Xiaowen [1 ]
Liu, Weipeng [1 ]
Liu, Yingju [1 ]
机构
[1] South China Agr Univ, Coll Mat & Energy, Guangzhou 510642, Peoples R China
关键词
Molybdenum disulphide; Graphene network; Hydrogen evolution reaction; Three-dimensional nanomaterial; ULTRATHIN NANOSHEETS; MOLYBDENUM; ELECTROCATALYSTS; NANOPARTICLES; COMPOSITES; CATALYST; ECONOMY; HYBRIDS; SITES;
D O I
10.1016/j.ijhydene.2019.12.014
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In order to optimize the conductivity of molybdenum disulfide (MoS2) and promote its large-scale application as a catalyst for hydrogen evolution, MoS2 is usually used to form composites with conductive materials, but these hybrid materials suffer from scare active sites, overlapping and complicate process. In this work, phosphoric acid is used as a builder of stereoscopic structures, which can not only twist graphene sheets into a P-doped three-dimensional (3D) graphene network but also promote surface electron transport between graphene sheets. Without adding additional framework materials such as carbon nano tubes or nickel foam, stereoscopic MoS2/graphene structures are formed with a large number of twisted graphene sheets to support the vertical growth of MoS2 and expose the edge sites of MoS2, showing a low Tafel slope about 35 mV dec(-1), a high current density of 900 mA cm(-2) at about 300 mV and a robust stability over 2000 cycles. Thus, this work shows a possibility to synthesize an efficient catalyst on a large-scale for hydrogen evolution reaction, which can promote the realization of hydrogen economy. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:4043 / 4053
页数:11
相关论文
共 50 条
  • [1] P-doped 3D graphene network supporting uniformly vertical MoS2 nanosheets for enhanced hydrogen evolution reaction
    Huang, Junying
    Chen, Mengting
    Zhang, Xiaowen
    Liu, Weipeng
    Liu, Yingju
    [J]. International Journal of Hydrogen Energy, 2020, 45 (07): : 4043 - 4053
  • [2] P-doped MoS2 nanosheets embedded in 3D porous carbon for electrocatalytic hydrogen evolution reaction
    Cao, Chunling
    Liu, Shengkai
    Xie, Fei
    Yang, Hui
    Cheng, Di
    Li, Wenjiang
    [J]. DIAMOND AND RELATED MATERIALS, 2024, 148
  • [3] Hydrogen Evolution Reaction on Hybrid Catalysts of Vertical MoS2 Nanosheets and Hydrogenated Graphene
    Han, Xiuxiu
    Tong, Xili
    Liu, Xingchen
    Chen, Ai
    Wen, Xiaodong
    Yang, Nianjun
    Guo, Xiang-Yun
    [J]. ACS CATALYSIS, 2018, 8 (03): : 1828 - 1836
  • [4] Enhanced hydrogen evolution reaction activity of hydrogen-annealed vertical MoS2 nanosheets
    He, Mengci
    Kong, Fanpeng
    Yin, Geping
    Lv, Zhe
    Sun, Xiudong
    Shi, Hongyan
    Gao, Bo
    [J]. RSC ADVANCES, 2018, 8 (26): : 14369 - 14376
  • [5] Field Effect Enhanced Hydrogen Evolution Reaction of MoS2 Nanosheets
    Wang, Junhui
    Yan, Mengyu
    Zhao, Kangning
    Liao, Xiaobin
    Wang, Peiyao
    Pan, Xuelei
    Yang, Wei
    Mai, Liqiang
    [J]. ADVANCED MATERIALS, 2017, 29 (07)
  • [6] MoS2 Nanosheets Supported on 3D Graphene Aerogel as a Highly Efficient Catalyst for Hydrogen Evolution
    Zhao, Yufei
    Xie, Xiuqiang
    Zhang, Jinqiang
    Liu, Hao
    Ahn, Hyo-Jun
    Sun, Kening
    Wang, Guoxiu
    [J]. CHEMISTRY-A EUROPEAN JOURNAL, 2015, 21 (45) : 15908 - +
  • [7] Exfoliated MoS2 with porous graphene nanosheets for enhanced electrochemical hydrogen evolution
    Liu, Yizhe
    Liu, Jiapeng
    Li, Zhen
    Fan, Xiaobin
    Li, Yang
    Zhang, Fengbao
    Zhang, Guoliang
    Peng, Wenchao
    Wang, Shaobin
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (30) : 13946 - 13952
  • [8] Transition metal doped MoS2 nanosheets for electrocatalytic hydrogen evolution reaction
    Venkatesh, P. Sundara
    Kannan, N.
    Babu, M. Ganesh
    Paulraj, G.
    Jeganathan, K.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (88) : 37256 - 37263
  • [9] (0D/3D) MoS2 on porous graphene as catalysts for enhanced electrochemical hydrogen evolution
    Liu, Yizhe
    Zhu, Yuanzhi
    Fan, Xiaobin
    Wang, Shaobin
    Li, Yang
    Zhang, Fengbao
    Zhang, Guoliang
    Peng, Wenchao
    [J]. CARBON, 2017, 121 : 163 - 169
  • [10] Light and complex 3D MoS2/graphene heterostructures as efficient catalysts for the hydrogen evolution reaction
    Teich, Jonah
    Dvir, Ravit
    Henning, Alex
    Hamo, Eliran R.
    Moody, Michael J.
    Jurca, Titel
    Cohen, Hagai
    Marks, Tobin J.
    Rosen, Brian A.
    Lauhon, Lincoln J.
    Ismach, Ariel
    [J]. NANOSCALE, 2020, 12 (04) : 2715 - 2725