Electron temperature and density of non-thermal atmospheric pressure argon plasma jet by convective wave packet model

被引:20
|
作者
Sornsakdanuphap, Jirapong [1 ]
Suanpoot, Pradoong [2 ]
Hong, Young June [1 ]
Ghimire, Bhagirath [1 ]
Cho, Guangsup [1 ]
Uhm, Han Sup [1 ]
Kim, Doyoung [1 ]
Kim, Yun Ji [3 ]
Choi, Eun Ha [1 ]
机构
[1] Kwangwoon Univ, Dept Elect & Biol Phys, Plasma Bioscience Res Ctr, Charged Particle Beam & Plasma Lab, Seoul 01899, South Korea
[2] Maejo Univ, Phrae Campus,17 Moo 3, Rongkwang Dist 54140, Phrae Province, Thailand
[3] Korea Food Res Inst, Seongnam 13539, South Korea
基金
新加坡国家研究基金会;
关键词
Plasma ambipolar diffusion; Convective wave packet model; Electron temperature and electron density in non-thermal atmospheric pressure plasma; INACTIVATION;
D O I
10.3938/jkps.70.979
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The propagation velocities (u(g) ) of argon plasma jet are obtained by intensified charge coupled device (ICCD) camera images at fixed gate width time of 5 ns. The propagation velocities in upstream and downstream regions are in the order of 10(4) - 10(5) m/s. The plasma ambipolar diffusion velocities are measured to be in the order of 10 - 10(2) m/s. Plasma jet discharges are generated by sinusoidal power supply in varying voltages from 2 to 4 kV at repetition frequency of about 40 kHz. By employing convective wave packet model, the electron temperature (T-e ) inside plasma bullet for argon non-thermal atmospheric pressure plasma jet is estimated to be about 1.18 eV. Also, the electron density (n(e) ) is found to be 8.0 x 10(14) - 2.5 x 10(15) cm(-3).
引用
收藏
页码:979 / 989
页数:11
相关论文
共 50 条
  • [1] Electron temperature and density of non-thermal atmospheric pressure argon plasma jet by convective wave packet model
    Jirapong Sornsakdanuphap
    Pradoong Suanpoot
    Young June Hong
    Bhagirath Ghimire
    Guangsup Cho
    Han Sup Uhm
    Doyoung Kim
    Yun Ji Kim
    Eun Ha Choi
    Journal of the Korean Physical Society, 2017, 70 : 979 - 989
  • [2] Plasma Propagation Speed and Electron Temperature in Slow Electron Energy Non-thermal Atmospheric Pressure Indirect-Plasma Jet
    Suanpoot, Pradoong
    Han, Gook-Hee
    Sornsakdanuphap, Jirapong
    Uhm, Han Sup
    Cho, Guangsup
    Choi, Eun Ha
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2015, 43 (07) : 2207 - 2211
  • [3] Modeling of a Non-Thermal RF Plasma Jet at Atmospheric Pressure
    Sigeneger, Florian
    Schaefer, Jan
    Weltmann, Klaus-Dieter
    Foest, Ruediger
    Loffhagen, Detlef
    PLASMA PROCESSES AND POLYMERS, 2017, 14 (4-5)
  • [4] Characterization of the Operational Modes of a Non-thermal Atmospheric Pressure Plasma Jet
    Demetillo, Mary Angelique
    Lopez, Jose L.
    2017 IEEE INTERNATIONAL CONFERENCE ON PLASMA SCIENCE (ICOPS), 2017,
  • [5] The effects of non-thermal atmospheric pressure plasma jet on attachment of osteoblast
    Kwon, Jae-Sung
    Kim, Yong Hee
    Choi, Eun Ha
    Kim, Kyoung-Nam
    CURRENT APPLIED PHYSICS, 2013, 13 : S42 - S47
  • [6] Synthesis of Copper Particles by Non-thermal Atmospheric Pressure Plasma Jet
    Lazea-Stoyanova, Andrada
    Vlad, Angela
    Vlaicu, Aurel Mihai
    Teodorescu, Valentin Serban
    Dinescu, Gheorghe
    PLASMA PROCESSES AND POLYMERS, 2015, 12 (08) : 705 - 709
  • [7] ELECTRON-TEMPERATURE AND ELECTRON-DENSITY PROFILES IN ATMOSPHERIC-PRESSURE ARGON PLASMA-JET
    SNYDER, SC
    REYNOLDS, LD
    FINCKE, JR
    LASSAHN, GD
    GRANDY, JD
    REPETTI, TE
    PHYSICAL REVIEW E, 1994, 50 (01): : 519 - 525
  • [8] A Boltzmann Electron Drift Diffusion Model for Atmospheric Pressure Non-Thermal Plasma Simulations
    Popoli, Arturo
    Ragazzi, Fabio
    Pierotti, Giacomo
    Neretti, Gabriele
    Cristofolini, Andrea
    PLASMA, 2023, 6 (03) : 393 - 407
  • [9] Axial plasma density propagation of barrier discharge non-thermal plasma bullets in an atmospheric pressure argon gas stream
    Ohyama, R.
    Sakamoto, M.
    Nagai, A.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2009, 42 (10)
  • [10] DNA strand scission induced by a non-thermal atmospheric pressure plasma jet
    Ptasinska, Sylwia
    Bahnev, Blagovest
    Stypczynska, Agnieszka
    Bowden, Mark
    Mason, Nigel J.
    Braithwaite, Nicholas St. J.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2010, 12 (28) : 7779 - 7781