Facile in situ synthesis of 2D porous g-C3N4 and g-C3N4/P25(N) heterojunction with enhanced quantum effect for efficient photocatalytic application

被引:47
|
作者
Ding, Mingye [1 ]
Wang, Wei [2 ]
Zhou, Yingjie [2 ]
Lu, Chunhua [3 ]
Ni, Yaru [3 ]
Xu, Zhongzi [3 ]
机构
[1] Hangzhou Dianzi Univ, Coll Mat & Environm Engn, Hangzhou 310018, Zhejiang, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Sch Phys & Optoelect Engn, Nanjing 210044, Jiangsu, Peoples R China
[3] Nanjing Tech Univ, Coll Mat Sci & Engn, Nanjing 210009, Jiangsu, Peoples R China
关键词
Carbon nitride; Photocatalysis; Quantum effect; Heterojunction; TiO2; CARBON NITRIDE NANOSHEETS; COMPOSITE PHOTOCATALYSTS; ANATASE TIO2; WATER; NANOCOMPOSITE; GRAPHENE; CONVERSION; REDUCTION; STABILITY; DIOXIDE;
D O I
10.1016/j.jallcom.2015.02.111
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The major challenge of employing photocatalysis for environment protection is to develop high efficient, low cost, and stable semiconductor photocatalysts. In the present study, an in situ annealing strategy is employed for large scale synthesis of two-dimensional (2D) porous graphitic carbon nitride (g-C3N4) and efficient g-C3N4/P25(N) (N doped P25) heterojunction with enhanced quantum effect. The P25 not only serves as the template for g-C3N4 polymerization, but is also modified by the N species to enhance the visible light absorption. Compared to the normal bulk g-C3N4, the 2D porous g-C3N4 with enhanced quantum effect is found to be more efficient in improving the specific surface area and the electron-hole pair's separation, even its light absorption edge is blue-shifted. Photocatalytic degradation of Rhodamine B (RhB) and phenol indicates the 2D g-C3N4 and g-C3N4/P25(N) are very efficient and stable under the xenon lamp irradiation. It is also found that the original mass ratio of urea, which is the precursor for g-C3N4 synthesis and P25 modification, to P25 also plays a significant effect on the photocatalytic activity. The optimized photocatalyst (mass ratio of P25 to urea is 1:8) can decompose total RhB aqueous solution (10 mg/L, 100 ml) in 25 min. Based on systematic characterizations and discussions, a possible photocatalytic mechanism for the excellent photocatalytic performance is proposed. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:34 / 40
页数:7
相关论文
共 50 条
  • [1] Facile synthesis and characterization of noble metals decorated g-C3N4 (g-C3N4/Pt and g-C3N4/Pd) nanocomposites for efficient photocatalytic production of Schiff bases
    Balraj, G.
    Gurrapu, Raju
    Kumar, Ambala Anil
    Sumalatha, V.
    Ayodhya, Dasari
    RESULTS IN CHEMISTRY, 2022, 4
  • [2] g-C3N4/g-C3N4 isotype heterojunction as an efficient platform for direct photodegradation of antibiotic
    Wang, Yu
    Qiao, Mengzhu
    Lv, Jun
    Xu, Guangqing
    Zheng, Zhixiang
    Zhang, Xinyi
    Wu, Yucheng
    FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2018, 26 (04) : 210 - 217
  • [3] Synthesis of S scheme 2D/2D g-C3N5/g-C3N4 heterojunction for photocatalytic degradation tetracycline
    Bi, Kejun
    Wang, Meng
    Li, Haoyu
    SURFACES AND INTERFACES, 2024, 50
  • [4] In-situ construction of 2D direct Z-scheme g-C3N4/g-C3N4 homojunction with high photocatalytic activity
    Qing Qiao
    Wei-Qing Huang
    Yuan-Yuan Li
    Bo Li
    Wangyu Hu
    Wei Peng
    Xiaoxing Fan
    Gui-Fang Huang
    Journal of Materials Science, 2018, 53 : 15882 - 15894
  • [5] In-situ construction of 2D direct Z-scheme g-C3N4/g-C3N4 homojunction with high photocatalytic activity
    Qiao, Qing
    Huang, Wei-Qing
    Li, Yuan-Yuan
    Li, Bo
    Hu, Wangyu
    Peng, Wei
    Fan, Xiaoxing
    Huang, Gui-Fang
    JOURNAL OF MATERIALS SCIENCE, 2018, 53 (23) : 15882 - 15894
  • [6] In Situ Construction of g-C3N4/g-C3N4 Metal-Free Heterojunction for Enhanced Visible-Light Photocatalysis
    Dong, Fan
    Zhao, Zaiwang
    Xiong, Ting
    Ni, Zilin
    Zhang, Wendong
    Sun, Yanjuan
    Ho, Wing-Kei
    ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (21) : 11392 - 11401
  • [7] Preparation and characterization of BiOBr/g-C3N4 and BiOCl/g-C3N4 electrode materials for high-performance asymmetric (BiOBr/g-C3N4|| g-C3N4) and symmetric (BiOBr/g-C3N4||BiOBr/g-C3N4) supercapattery devices
    Ramasamy, Bhuvaneshwari
    Paul, Jeya M. Peter
    Raman, Kannan
    Sundaram, Rajashabala
    JOURNAL OF ENERGY STORAGE, 2024, 102
  • [8] Facile synthesis of porous isotype heterojunction g-C3N4 for enhanced photocatalytic degradation of RhB under visible light
    Liao, Gang
    Yao, Wu
    DIAMOND AND RELATED MATERIALS, 2022, 128
  • [9] Research progress on modification strategy of g-C3N4 and g-C3N4/Ti3C2 heterojunction
    Sun, Danyang
    Zhai, Tingting
    Li, Hansheng
    Liu, Wenfang
    Huagong Xuebao/CIESC Journal, 2020, 71 : 1 - 11
  • [10] Synthesis of g-C3N4/Ag3PO4 heterojunction with enhanced photocatalytic performance
    He, Peizhi
    Song, Limin
    Zhang, Shujuan
    Wu, Xiaoqing
    Wei, Qingwu
    MATERIALS RESEARCH BULLETIN, 2014, 51 : 432 - 437