Survival analysis of fatigue data: Application of generalized linear models and hierarchical Bayesian model

被引:22
|
作者
Liu, Xiao-Wei [1 ]
Lu, Da-Gang [1 ]
机构
[1] Harbin Inst Technol, Sch Civil Engn, Harbin 150090, Heilongjiang, Peoples R China
基金
美国国家科学基金会;
关键词
Fatigue; P-S-N curves; Survival analysis; Generalized linear models; Hierarchical Bayesian model;
D O I
10.1016/j.ijfatigue.2018.07.027
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The survival analysis is introduced to describe the fatigue failure process in this paper for obtaining a set of flexible and accurate probabilistic stress-life (P-S-N) curves in fatigue reliability analysis. The generalized linear models (GLMs) are applied as well for expressing a trend and random errors of the P-S-N curves simultaneously. A GLM, including a linear Basquin relation and a shape-fixed Weibull hazard function, has been established for the P-S-N curves estimation, then a hierarchical Bayesian model is employed to estimate their parameters. The fatigue probability design curves are generated by the survivor function or the resulting predictive distributions. Finally, a comparative example is presented to verify the effectiveness of the method.
引用
收藏
页码:39 / 46
页数:8
相关论文
共 50 条
  • [1] Bayesian hierarchical generalized linear models for a geographical subset of recovery data
    Cocchi, D
    Trivisano, C
    [J]. ENVIRONMETRICS, 2002, 13 (02) : 139 - 153
  • [2] Bayesian Analysis for Dynamic Generalized Linear Latent Model with Application to Tree Survival Rate
    Cheng, Yu-sheng
    Ding, Mei-wen
    Xia, Ye-mao
    Zhan, Wen-fa
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [3] Hierarchical Bayesian fatigue data analysis
    Liu, Xiao-Wei
    Lu, Da-Gang
    Hoogenboom, Pierre C. J.
    [J]. INTERNATIONAL JOURNAL OF FATIGUE, 2017, 100 : 418 - 428
  • [4] Analysis of ulcer data using hierarchical generalized linear models
    Lee, YJ
    Nelder, JA
    [J]. STATISTICS IN MEDICINE, 2002, 21 (02) : 191 - 202
  • [5] Analysis of longitudinal data: Application of hierarchical linear models
    Keller, F
    [J]. ZEITSCHRIFT FUR KLINISCHE PSYCHOLOGIE UND PSYCHOTHERAPIE, 2003, 32 (01): : 51 - 61
  • [6] Hierarchical multivariate mixture generalized linear models for the analysis of spatial data: An application to disease mapping
    Torabi, Mahmoud
    [J]. BIOMETRICAL JOURNAL, 2016, 58 (05) : 1138 - 1150
  • [7] Hierarchical generalized linear models and frailty models with Bayesian nonparametric mixing
    Walker, SG
    Mallick, BK
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1997, 59 (04): : 845 - 860
  • [8] Bayesian Inference on Hierarchical Nonlocal Priors in Generalized Linear Models
    Cao, Xuan
    Lee, Kyoungjae
    [J]. BAYESIAN ANALYSIS, 2024, 19 (01): : 99 - 122
  • [9] Sensitivity analysis in Bayesian generalized linear mixed models for binary data
    Roos, Malgorzata
    Held, Leonhard
    [J]. BAYESIAN ANALYSIS, 2011, 6 (02): : 259 - 278
  • [10] The Use of Joint Hierarchical Generalized Linear Models: Application to Multivariate Longitudinal Data
    Lee, Donghwan
    Yoo, Jae Keun
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2015, 28 (02) : 335 - 342