Robust Designs for Poisson Regression Models

被引:9
|
作者
McGree, James M. [1 ]
Eccleston, John A. [2 ]
机构
[1] Queensland Univ Technol, Brisbane, Qld 4001, Australia
[2] Univ Queensland Hawken Dr, Sch Math & Phys, St Lucia, Qld 4072, Australia
关键词
Analytical solution; Average model; Canonical form; Compromise design; Generalized linear model; Optimal design; EQUIVALENCE; VARIABLES; CRITERIA;
D O I
10.1080/00401706.2012.648867
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the problem of how to construct robust designs for Poisson regression models. An analytical expression is derived for robust designs for first-order Poisson regression models where uncertainty exists in the prior parameter estimates. Given certain constraints in the methodology, it may be necessary to extend the robust designs for implementation in practical experiments. With these extensions, our methodology constructs designs that perform similarly, in terms of estimation, to current techniques and offers the solution in a more timely manner. We further apply this analytic result to cases where uncertainty exists in the linear predictor. The application of this methodology to practical design problems such as screening experiments is explored. Given the minimal prior knowledge that is usually available when conducting such experiments, it is recommended to derive designs robust across a variety of systems. However, incorporating such uncertainty into the design process can be a computationally intense exercise. Hence, our analytic approach is explored as an alternative.
引用
收藏
页码:64 / 72
页数:9
相关论文
共 50 条
  • [1] D-OPTIMAL DESIGNS FOR POISSON REGRESSION MODELS
    Russell, K. G.
    Woods, D. C.
    Lewis, S. M.
    Eccleston, J. A.
    [J]. STATISTICA SINICA, 2009, 19 (02) : 721 - 730
  • [2] D-optimal designs for Poisson regression models
    Wang, Yanping
    Myers, Raymond H.
    Smith, Eric. P.
    Ye, Keying
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2006, 136 (08) : 2831 - 2845
  • [3] Minimax robust designs for misspecified regression models
    Shi, PL
    Ye, JJ
    Zhou, J
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2003, 31 (04): : 397 - 414
  • [4] Robust regression designs for approximate polynomial models
    Fang, ZD
    Wiens, DP
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2003, 117 (02) : 305 - 321
  • [5] Optimal and robust designs for trigonometric regression models
    Xiaojian Xu
    Xiaoli Shang
    [J]. Metrika, 2014, 77 : 753 - 769
  • [6] Robust designs for wavelet approximations of regression models
    Oyet, AJ
    Wiens, DP
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2000, 12 (06) : 837 - 859
  • [7] Optimal and robust designs for trigonometric regression models
    Xu, Xiaojian
    Shang, Xiaoli
    [J]. METRIKA, 2014, 77 (06) : 753 - 769
  • [8] Robust designs for misspecified exponential regression models
    Xu, Xiaojian
    [J]. APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2009, 25 (02) : 179 - 193
  • [9] Some robust designs for polynomial regression models
    Fang, Zhide
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2006, 34 (04): : 623 - 638
  • [10] Bayesian D-Optimal Designs for Poisson Regression Models
    Zhang, Ying
    Ye, Keying
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2014, 43 (06) : 1234 - 1247