Analysis of maturation features in fetal brain ultrasound via artificial intelligence for the estimation of gestational age

被引:24
|
作者
Burgos-Artizzu, Xavier P. [1 ,2 ,3 ]
Coronado-Gutierrez, David [1 ,2 ,3 ]
Valenzuela-Alcaraz, Brenda [2 ,3 ]
Vellve, Kilian [2 ,3 ]
Eixarch, Elisenda [2 ,3 ,4 ,5 ]
Crispi, Fatima [2 ,3 ,4 ,5 ]
Bonet-Carne, Elisenda [2 ,3 ,4 ,5 ,6 ]
Bennasar, Mar [2 ,3 ,4 ]
Gratacos, Eduard [2 ,3 ,4 ,5 ]
机构
[1] Transmural Biotech SL, Barcelona, Spain
[2] Univ Barcelona, BCNatal, Barcelona Ctr Maternal Fetal & Neonatal Med, Fetal Med Res Ctr,Hosp Clin, Barcelona, Spain
[3] Univ Barcelona, Hosp St Joan de Deu, Inst Invest Biomed August Pi & Sunyer, Barcelona, Spain
[4] Inst Invest Biomed August Pi & Sunyer, IDIBAPS, Barcelona, Spain
[5] Inst Salud Carlos III, Ctr Biomed Res Rare Dis CIBER ER, Madrid, Spain
[6] Univ Politecn Cataluna, BarcelonaTech, Barcelona, Spain
关键词
artificial intelligence; fetal ultrasound; gestational age; pregnancy screening; CROWN-RUMP LENGTH; GROWTH; CLASSIFICATION; PREGNANCY;
D O I
10.1016/j.ajogmf.2021.100462
中图分类号
R71 [妇产科学];
学科分类号
100211 ;
摘要
BACKGROUND: Optimal prenatal care relies on accurate gestational age dating. After the first trimester, the accuracy of current gestational age estimation methods diminishes with increasing gestational age. Considering that, in many countries, access to first trimester crown rump length is still difficult owing to late booking, infrequent access to prenatal care, and unavailability of early ultrasound examination, the development of accurate methods for gestational age estimation in the second and third trimester of pregnancy remains an unsolved challenge in fetal medicine. OBJECTIVE: This study aimed to evaluate the performance of an artifi-cial intelligence method based on automated analysis of fetal brain morphology on standard cranial ultrasound sections to estimate the gestational age in second and third trimester fetuses compared with the current formulas using standard fetal biometry. STUDY DESIGN: Standard transthalamic axial plane images from a total of 1394 patients undergoing routine fetal ultrasound were used to develop an artificial intelligence method to automatically estimate gestational age from the analysis of fetal brain information. We compared its performance-as stand alone or in combination with fetal biometric parameters-against 4 currently used fetal biometry formulas on a series of 3065 scans from 1992 patients undergoing second (n=1761) or third trimester (n=1298) routine ultrasound, with known gestational age estimated from crown rump length in the first trimester. RESULTS: Overall, 95% confidence interval of the error in gestational age estimation was 14.2 days for the artificial intelligence method alone and 11.0 when used in combination with fetal biometric parameters, compared with 12.9 days of the best method using standard biometrics alone. In the third trimester, the lower 95% confidence interval errors were 14.3 days for artificial intelligence in combination with biometric parameters and 17 days for fetal biometrics, whereas in the second trimester, the 95% confidence interval error was 6.7 and 7, respectively. The performance differences were even larger in the small-for-gestational-age fetuses group (14.8 and 18.5, respectively). CONCLUSION: An automated artificial intelligence method using standard sonographic fetal planes yielded similar or lower error in gestational age estimation compared with fetal biometric parameters, especially in the third trimester. These results support further research to improve the performance of these methods in larger studies.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Estimation of gestational age by ultrasound measurement of fetal transcerebellar diameter
    Cinnusamy, Maheswari
    Shastri, Deepti
    Martina, JosephineArokia
    JOURNAL OF THE ANATOMICAL SOCIETY OF INDIA, 2021, 70 (01) : 19 - 24
  • [2] Ultrasound estimation of fetal weight in small for gestational age pregnancies
    Blumenfeld, Yair J.
    Lee, Henry C.
    Pullen, Kristin M.
    Wong, Amy E.
    Pettit, Kate
    Taslimi, M. Mark
    JOURNAL OF MATERNAL-FETAL & NEONATAL MEDICINE, 2010, 23 (08): : 790 - 793
  • [3] Gestational age estimation from ultrasound fetal biometrics in China
    Sun, J. F.
    Zhang, L. J.
    Cui, L. Q.
    Luo, X. D.
    He, G. H.
    Dong, X. J.
    He, L.
    Zhang, J. H.
    Sun, J. H.
    Chen, G.
    Lv, Y.
    Liu, L. Y.
    CLINICAL AND EXPERIMENTAL OBSTETRICS & GYNECOLOGY, 2020, 47 (05): : 714 - 722
  • [4] Use of artificial intelligence for gestational age estimation: a systematic review and meta-analysis
    Naz, Sabahat
    Noorani, Sahir
    Zaidi, Syed Ali Jaffar
    Rahman, Abdu R.
    Sattar, Saima
    Das, Jai K.
    Hoodbhoy, Zahra
    FRONTIERS IN GLOBAL WOMENS HEALTH, 2025, 6
  • [5] Fetal visceral maturation: A useful contribution to gestational age estimation in human fetuses
    Piercecchi-Marti, MD
    Adalian, P
    Liprandi, A
    Figarella-Branger, D
    Dutour, O
    Leonetti, G
    JOURNAL OF FORENSIC SCIENCES, 2004, 49 (05) : 912 - 917
  • [6] Machine learning for accurate estimation of fetal gestational age based on ultrasound images
    Lee, Lok Hin
    Bradburn, Elizabeth
    Craik, Rachel
    Yaqub, Mohammad
    Norris, Shane A. A.
    Ismail, Leila Cheikh
    Ohuma, Eric O. O.
    Barros, Fernando C. C.
    Lambert, Ann
    Carvalho, Maria
    Jaffer, Yasmin A. A.
    Gravett, Michael
    Purwar, Manorama
    Wu, Qingqing
    Bertino, Enrico
    Munim, Shama
    Min, Aung Myat
    Bhutta, Zulfiqar
    Villar, Jose
    Kennedy, Stephen H. H.
    Noble, J. Alison
    Papageorghiou, Aris T. T.
    NPJ DIGITAL MEDICINE, 2023, 6 (01)
  • [7] Machine learning for accurate estimation of fetal gestational age based on ultrasound images
    Lok Hin Lee
    Elizabeth Bradburn
    Rachel Craik
    Mohammad Yaqub
    Shane A. Norris
    Leila Cheikh Ismail
    Eric O. Ohuma
    Fernando C. Barros
    Ann Lambert
    Maria Carvalho
    Yasmin A. Jaffer
    Michael Gravett
    Manorama Purwar
    Qingqing Wu
    Enrico Bertino
    Shama Munim
    Aung Myat Min
    Zulfiqar Bhutta
    Jose Villar
    Stephen H. Kennedy
    J. Alison Noble
    Aris T. Papageorghiou
    npj Digital Medicine, 6
  • [8] Estimation of gestational age and assessment of canine fetal maturation using radiology and ultrasonography: A review
    Lopate, C.
    THERIOGENOLOGY, 2008, 70 (03) : 397 - 402
  • [9] ESTIMATION OF GESTATIONAL AGE IN FETAL STATE
    JOHNSON, JWC
    ODELL, GB
    ANNUAL REVIEW OF MEDICINE, 1973, 24 : 165 - 174
  • [10] A mobile-optimized artificial intelligence system for gestational age and fetal malpresentation assessment
    Ryan G. Gomes
    Bellington Vwalika
    Chace Lee
    Angelica Willis
    Marcin Sieniek
    Joan T. Price
    Christina Chen
    Margaret P. Kasaro
    James A. Taylor
    Elizabeth M. Stringer
    Scott Mayer McKinney
    Ntazana Sindano
    George E. Dahl
    William Goodnight
    Justin Gilmer
    Benjamin H. Chi
    Charles Lau
    Terry Spitz
    T. Saensuksopa
    Kris Liu
    Tiya Tiyasirichokchai
    Jonny Wong
    Rory Pilgrim
    Akib Uddin
    Greg Corrado
    Lily Peng
    Katherine Chou
    Daniel Tse
    Jeffrey S. A. Stringer
    Shravya Shetty
    Communications Medicine, 2