Effect of combined addition amount of nano zero-valent iron and biochar on methane production by anaerobic digestion of corn straw

被引:9
|
作者
Jiao, Youzhou [1 ,2 ,3 ]
Xue, Huizan [1 ,2 ,3 ]
He, Chao [1 ,2 ,3 ]
Wang, Zigang [1 ,2 ,3 ]
Ma, Xiaoran [1 ,2 ,3 ]
Liu, Xinxin [1 ,2 ,3 ]
Liu, Liang [1 ,2 ,3 ]
Chang, Chun [4 ]
Petracchini, Francesco [5 ]
Li, Panpan [1 ,2 ,3 ]
机构
[1] Henan Agr Univ, Coll Mech & Elect Engn, Minist Agr & Rural Affairs, Key Lab New Mat & Facil Rural Renewable Energy, Zhengzhou 450002, Peoples R China
[2] Henan Agr Univ, Henan Int Joint Lab Biomass Energy & Nanomat, Zhengzhou 450002, Peoples R China
[3] Henan Agr Univ, Henan Collaborat Innovat Ctr Biomass Energy, Zhengzhou 450002, Peoples R China
[4] Zhengzhou Univ, Sch Chem Engn, Zhengzhou 450001, Peoples R China
[5] Natl Res Council Italy Inst Atmospher Pollut Res, I-29300 Rome, Italy
基金
中国国家自然科学基金;
关键词
Addition amount; Anaerobic digestion; Methane production; NZVI; BC; WASTE ACTIVATED-SLUDGE; FOOD WASTE; METHANOGENIC ACTIVITY; MICROBIAL COMMUNITY; OPTIMIZATION; HYDROGEN; MANURE;
D O I
10.1007/s10668-021-01629-0
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Anaerobic digestion (AD) is an attractive straw resource treatment technology as it can improve the utilization efficiency of straw resource. Raw straw materials contain complex polymers, so some enhancements are needed to achieve better biodegradability. The addition of various additives has become an effective method to improve the AD efficiency, among which the effect of nano zero-valent iron (NZVI) and biochar (BC) on AD has become a research hot spot. In this paper, the powder of NZVI and BC (mixing ratio 1:1) was used as additives to study the effect of different addition amount (3%, 6%, 9%, 12% and 15%) on the AD of corn straw for methane production. The cycle of AD was 28 days, the fermentation temperature was 35 celcius, and the total solid (TS) concentration was 4%. The combined addition of NZVI and BC enhanced the pH stability of the digestion process and the degradation of organic acids. The greatest enhancement of methane production was obtained when the combined addition amount of NZVI and BC was 9%, and the cumulative methane production was 151.06 mL/g VS, which is 20.73% higher than the control group. The combined addition of NZVI and BC could increase the methane content within a certain range, but an inhibitory effect was observed when exceeded 9%. When the addition amount reached 12% and 15%, the cumulative gas production and cumulative methane production of corn straw AD were inhibited to varying degrees. The VS removal efficiency was the highest in the group with the addition amount of 9%, which was 20.41% higher than the control. The modified Gompertz equation fitted well with the maximum methane production rate (Rm) and lag time (lambda) when the addition amount was 9%, with high correlation coefficients. Considering that NZVI could be recovered by magnetic separation to further reduce the cost of additives, while the cost of biochar was relatively low, it was believed that the crop straw AD technology had certain commercial application value. [GRAPHICS]
引用
收藏
页码:4709 / 4726
页数:18
相关论文
共 50 条
  • [1] Effect of combined addition amount of nano zero-valent iron and biochar on methane production by anaerobic digestion of corn straw
    Youzhou Jiao
    Huizan Xue
    Chao He
    Zigang Wang
    Xiaoran Ma
    Xinxin Liu
    Liang Liu
    Chun Chang
    Francesco Petracchini
    Panpan Li
    [J]. Environment, Development and Sustainability, 2022, 24 : 4709 - 4726
  • [2] Simultaneous addition of biochar and zero-valent iron to improve food waste anaerobic digestion
    Yuan, Tugui
    Shi, Xiaoyu
    Sun, Ran
    Ko, Jae Hac
    Xu, Qiyong
    [J]. JOURNAL OF CLEANER PRODUCTION, 2021, 278
  • [3] Enhancement of anaerobic digestion of ciprofloxacin wastewater by nano zero-valent iron immobilized onto biochar
    Yao, Bing
    Liu, Min
    Tang, Taotao
    Hu, Xuan
    Yang, Chengyu
    Chen, Ying
    [J]. BIORESOURCE TECHNOLOGY, 2023, 385
  • [4] Microbial mechanism underlying the effect of biochar supported nano zero-valent iron on the anaerobic digestion of food waste
    Li, Yingnan
    Wang, Pan
    Zhao, Liya
    Yang, Xinyu
    Ren, Lianhai
    [J]. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2023, 11 (06):
  • [5] Effect of nano zero-valent iron on the anaerobic digestion of food waste: Performance and mechanism
    Wang, Ruonan
    Al-Dhabi, Naif Abdullah
    Jiang, Yufeng
    Dai, Xiaofeng
    Li, Rui
    Tang, Wangwang
    Guo, Rongbo
    Fu, Shanfei
    [J]. FUEL, 2024, 366
  • [6] Effect of nanoscale zero-valent iron on sludge anaerobic digestion
    Jia, Tongtong
    Wang, Zaizhao
    Shan, Haiqiang
    Liu, Yuanfeng
    Gong, Lei
    [J]. RESOURCES CONSERVATION AND RECYCLING, 2017, 127 : 190 - 195
  • [7] Enhanced Anaerobic Digestion of Swine Manure by the Addition of Zero-Valent Iron.
    Yang, Yuan
    Wang, Jianyu
    Zhou, Yanbo
    [J]. ENERGY & FUELS, 2019, 33 (12) : 12441 - 12449
  • [8] Implications and application of nano zero-valent iron for anaerobic digestion and wastewater treatment
    Hu, Zhiqiang
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [9] Effect of zero-valent iron (ZVI) and biogas slurry reflux on methane production by anaerobic digestion of waste activated sludge
    He, Junguo
    Cui, Xinxin
    Chu, Zhaorui
    Jiang, Zhifeng
    Pang, Heliang
    Xin, Xiaodong
    Duan, Shengye
    Zhong, Yijie
    [J]. WATER ENVIRONMENT RESEARCH, 2024, 96 (02)
  • [10] EFFECT OF BIOCHAR AND ETHANOL ON METHANE PRODUCTION IN ANAEROBIC DIGESTION OF RAPE STRAW
    Liu, Wenyuan
    Xin, Ya
    Wang, Dianlong
    Shi, Hao
    Li, Xiangqian
    [J]. Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2023, 44 (03): : 277 - 283