Nanoshells for photothermal therapy: a Monte-Carlo based numerical study of their design tolerance

被引:22
|
作者
Grosges, Thomas [1 ]
Barchiesi, Dominique [1 ]
Kessentini, Sameh [1 ]
Grehan, Gerard [2 ,4 ]
de la Chapelle, Marc Lamy [3 ]
机构
[1] Univ Technol Troyes, STMR CNRS UMR 6279, Project UTT INRIA Gamma3, Project Grp Automat Mesh Generat & Adv Methods, F-10010 Troyes, France
[2] Univ St Etienne Rouvray, F-76801 St Etienne, France
[3] Univ Paris 13, UFR SMBH, FRE 3043, CSPBAT CNRS, F-93017 Bobigny, France
[4] Inst Natl Sci Appl Rouen, F-76801 St Etienne, France
来源
BIOMEDICAL OPTICS EXPRESS | 2011年 / 2卷 / 06期
关键词
OPTICAL-PROPERTIES; SILVER NANOPARTICLES; MIE-SCATTERING; GOLD; ABSORPTION; PLASMONICS; MODELS; SHAPE;
D O I
10.1364/BOE.2.001584
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The optimization of the coated metallic nanoparticles and nanoshells is a current challenge for biological applications, especially for cancer photothermal therapy, considering both the continuous improvement of their fabrication and the increasing requirement of efficiency. The efficiency of the coupling between illumination with such nanostructures for burning purposes depends unevenly on their geometrical parameters (radius, thickness of the shell) and material parameters (permittivities which depend on the illumination wavelength). Through a Monte-Carlo method, we propose a numerical study of such nanodevice, to evaluate tolerances (or uncertainty) on these parameters, given a threshold of efficiency, to facilitate the design of nanoparticles. The results could help to focus on the relevant parameters of the engineering process for which the absorbed energy is the most dependant. The Monte-Carlo method confirms that the best burning efficiency are obtained for hollow nanospheres and exhibit the sensitivity of the absorbed electromagnetic energy as a function of each parameter. The proposed method is general and could be applied in design and development of new embedded coated nanomaterials used in biomedicine applications. (C)2011 Optical Society of America
引用
下载
收藏
页码:1584 / 1596
页数:13
相关论文
共 50 条
  • [1] MONTE-CARLO NUMERICAL FORECASTS
    LEITH, CE
    BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 1973, 54 (07) : 747 - 748
  • [2] MONTE-CARLO ANALYSIS OF SYSTEM TOLERANCE
    DISTLER, RJ
    IEEE TRANSACTIONS ON EDUCATION, 1977, 20 (02) : 98 - 101
  • [3] Monte-Carlo Simulation on Gold Nanoshells Enhanced Laser Interstitial Thermal Therapy on Target Tumor
    Wang, Xin
    Gao, Xiang
    Liu, Jing
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2010, 7 (06) : 1025 - 1031
  • [4] Renewal function and interval availability: A numerical Monte-Carlo study
    Gertsbakh, I
    Shpungin, Y
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2004, 33 (03) : 639 - 649
  • [5] A Monte-Carlo study of meanders
    Golinelli, O
    EUROPEAN PHYSICAL JOURNAL B, 2000, 14 (01): : 145 - 155
  • [6] MONTE-CARLO PROCEDURES IN LIGHTING DESIGN
    STANGER, D
    JOURNAL OF THE ILLUMINATING ENGINEERING SOCIETY, 1984, 13 (04): : 368 - 371
  • [7] A Monte-Carlo study of meanders
    O. Golinelli
    The European Physical Journal B - Condensed Matter and Complex Systems, 2000, 14 : 145 - 155
  • [8] A MONTE-CARLO STUDY OF SUPERRADIANCE
    MAWHINNEY, RD
    COHERENCE AND QUANTUM OPTICS VI, 1989, : 727 - 730
  • [9] PET monitoring based on Monte-Carlo simulation for proton therapy
    Claire Van Ngoc Ty
    De Marzi, Ludovic
    Jan, Sebastien
    Lestand, Loic
    Comtat, Claude
    Ferrand, Regis
    Trebossen, Regine
    JOURNAL OF NUCLEAR MEDICINE, 2011, 52
  • [10] USE OF A MONTE-CARLO COMPUTER CODE TO DESIGN A NEUTRON THERAPY FACILITY
    KUCHNIR, FT
    SKAGGS, LS
    FRIGERIO, NA
    PHYSICS IN MEDICINE AND BIOLOGY, 1973, 18 (04): : 588 - 588