Finite-time stability of linear stochastic fractional-order systems with time delay

被引:11
|
作者
Mchiri, Lassaad [1 ]
Ben Makhlouf, Abdellatif [2 ,3 ]
Baleanu, Dumitru [4 ,5 ]
Rhaima, Mohamed [1 ,6 ]
机构
[1] King Saud Univ, Coll Sci, Dept Stat & Operat Res, POB 2455, Riyadh 11451, Saudi Arabia
[2] Jouf Univ, Coll Sci, Math Dept, POB 2014, Sakaka, Saudi Arabia
[3] Univ Sfax, Dept Math, Fac Sci Sfax, Route Soukra,BP 1171, Sfax 3000, Tunisia
[4] Cankaya Univ, Dept Math, Ankara, Turkey
[5] Inst Space Sci, Magurele, Romania
[6] Univ Tunis El Manar, Fac Sci Tunis, Dept Math, Tunis 1060, Tunisia
关键词
Generalized Gronwall inequality; Caputo derivative; SENSOR FAULT ESTIMATION; STABILIZATION;
D O I
10.1186/s13662-021-03500-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper focuses on the finite-time stability of linear stochastic fractional-order systems with time delay for alpha is an element of (1/2, 1). Under the generalized Gronwall inequality and stochastic analysis techniques, the finite-time stability of the solution for linear stochastic fractional-order systems with time delay is investigated. We give two illustrative examples to show the interest of the main results.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Finite-time stability of linear stochastic fractional-order systems with time delay
    Lassaad Mchiri
    Abdellatif Ben Makhlouf
    Dumitru Baleanu
    Mohamed Rhaima
    [J]. Advances in Difference Equations, 2021
  • [2] Finite-time stability of linear fractional-order time-delay systems
    Naifar, Omar
    Nagy, A. M.
    Ben Makhlouf, Abdellatif
    Kharrat, Mohamed
    Hammami, Mohamed Ali
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2019, 29 (01) : 180 - 187
  • [3] Finite-time stability of fractional-order stochastic singular systems with time delay and white noise
    Mathiyalagan, Kalidass
    Balachandran, Krishnan
    [J]. COMPLEXITY, 2016, 21 (S2) : 370 - 379
  • [4] NEW FINITE-TIME STABILITY ANALYSIS OF STOCHASTIC FRACTIONAL-ORDER TIME-DELAY SYSTEMS
    Ben Makhlouf, Abdellatif
    Mchiri, Lassaad
    Arfaoui, Hassen
    Rguigui, Hafedh
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2023, 53 (04) : 1011 - 1018
  • [5] Finite-Time Stability of Linear Caputo-Katugampola Fractional-Order Time Delay Systems
    Ben Makhlouf, Abdellatif
    Nagy, A. M.
    [J]. ASIAN JOURNAL OF CONTROL, 2020, 22 (01) : 297 - 306
  • [6] Finite-time stability of impulsive fractional-order systems with time-delay
    Hei, Xindong
    Wu, Ranchao
    [J]. APPLIED MATHEMATICAL MODELLING, 2016, 40 (7-8) : 4285 - 4290
  • [7] Finite-time stability of fractional-order nonlinear systems
    Feng, Zaiyong
    Xiang, Zhengrong
    [J]. CHAOS, 2024, 34 (02)
  • [8] Finite-Time Stability of Fractional-Order Neural Networks with Delay
    吴然超
    黑鑫东
    陈立平
    [J]. Communications in Theoretical Physics, 2013, 60 (08) : 189 - 193
  • [9] Finite-Time Stability of Fractional-Order Neural Networks with Delay
    Wu Ran-Chao
    Hei Xin-Dong
    Chen Li-Ping
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2013, 60 (02) : 189 - 193
  • [10] Some results on finite-time stability of stochastic fractional-order delay differential equations
    Luo, Danfeng
    Tian, Mengquan
    Zhu, Quanxin
    [J]. Chaos, Solitons and Fractals, 2022, 158