Discrete Equivalence of Non-positive at Infinity Plane Valuations

被引:1
|
作者
Galindo, Carlos [1 ,2 ]
Monserrat, Francisco [3 ]
Jesus Moreno-Avila, Carlos [1 ,2 ]
机构
[1] Univ Jaume 1, Dept Matemat, Campus Riu Sec, Castellon De La Plana 12071, Spain
[2] Univ Jaume 1, Inst Univ Matemat & Aplicac Castello, Campus Riu Sec, Castellon De La Plana 12071, Spain
[3] Univ Politecn Valencia, Inst Univ Matemat Pura & Aplicada, Camino Vera S-N, Valencia 46022, Spain
关键词
Non-positive at infinity valuations; plane valuations; singularities; NEWTON-OKOUNKOV BODIES; LOCAL UNIFORMIZATION; SURFACES; SEMIGROUPS; CURVES; FIELDS;
D O I
10.1007/s00025-021-01435-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Non-positive at infinity valuations are a class of real plane valuations which have a nice geometrical behavior. They are divided in three types. We study the dual graphs of non-positive at infinity valuations and give an algorithm for obtaining them. Moreover we compare these graphs attending the type of their corresponding valuation.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Discrete Equivalence of Non-positive at Infinity Plane Valuations
    Carlos Galindo
    Francisco Monserrat
    Carlos Jesús Moreno-Ávila
    Results in Mathematics, 2021, 76
  • [2] Non-positive and negative at infinity divisorial valuations of Hirzebruch surfaces
    Galindo, Carlos
    Monserrat, Francisco
    Moreno-Avila, Carlos-Jesus
    REVISTA MATEMATICA COMPLUTENSE, 2020, 33 (02): : 349 - 372
  • [3] Non-positive and negative at infinity divisorial valuations of Hirzebruch surfaces
    Carlos Galindo
    Francisco Monserrat
    Carlos-Jesús Moreno-Ávila
    Revista Matemática Complutense, 2020, 33 : 349 - 372
  • [4] Seshadri-type constants and Newton-Okounkov bodies for non-positive at infinity valuations of Hirzebruch surfaces
    Galindo, Carlos
    Monserrat, Francisco
    Moreno-avila, Carlos-Jesus
    QUAESTIONES MATHEMATICAE, 2023, 46 (11) : 2367 - 2401
  • [5] The Abhyankar-Moh Theorem for plane valuations at infinity
    Galindo, C.
    Monserrat, F.
    JOURNAL OF ALGEBRA, 2013, 374 : 181 - 194
  • [6] δ-sequences and evaluation codes defined by plane valuations at infinity
    Galindo, Carlos
    Monserrat, Francisco
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2009, 98 : 714 - 740
  • [7] SPACES WITH NON-POSITIVE CURVATURE
    BUSEMANN, H
    ACTA MATHEMATICA, 1948, 80 (04) : 259 - 310
  • [8] Evaluation codes defined by finite families of plane valuations at infinity
    Galindo, C.
    Monserrat, F.
    DESIGNS CODES AND CRYPTOGRAPHY, 2014, 70 (1-2) : 189 - 213
  • [9] COUNTEREXAMPLES IN NON-POSITIVE CURVATURE
    Coudene, Yves
    Schapira, Barbara
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 30 (04) : 1095 - 1106
  • [10] Evaluation codes defined by finite families of plane valuations at infinity
    C. Galindo
    F. Monserrat
    Designs, Codes and Cryptography, 2014, 70 : 189 - 213