FORBIDDEN PAIRS AND (k, m)-PANCYCLICITY

被引:2
|
作者
Crane, Charles Brian [1 ]
机构
[1] Marygrove Coll, Dept Math, 8425 W McNichols Rd, Detroit, MI 48221 USA
关键词
hamiltonian; pancyclic; forbidden subgraph; cycle; claw-free; GRAPHS;
D O I
10.7151/dmgt.1949
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph G on n vertices is said to be (k, m)-pancyclic if every set of k vertices in G is contained in a cycle of length r for each r is an element of {m, m+1, . . . , n}. This property, which generalizes the notion of a vertex pancyclic graph, was defined by Faudree, Gould, Jacobson, and Lesniak in 2004. The notion of (k, m)-pancyclicity provides one way to measure the prevalence of cycles in a graph. We consider pairs of subgraphs that, when forbidden, guarantee hamiltonicity for 2-connected graphs on n >= 10 vertices. There are exactly ten such pairs. For each integer k >= 1 and each of eight such subgraph pairs {R, S}, we determine the smallest value m such that any 2-connected {R, S}-free graph on n >= 10 vertices is guaranteed to be (k,m)-pancyclic. Examples are provided that show the given values are best possible. Each such example we provide represents an infinite family of graphs.
引用
收藏
页码:649 / 663
页数:15
相关论文
共 50 条
  • [1] Toughness, Forbidden Subgraphs and Pancyclicity
    Zheng, Wei
    Broersma, Hajo
    Wang, Ligong
    [J]. GRAPHS AND COMBINATORICS, 2021, 37 (03) : 839 - 866
  • [2] Forbidden subgraphs for chorded pancyclicity
    Cream, Megan
    Gould, Ronald J.
    Larsen, Victor
    [J]. DISCRETE MATHEMATICS, 2017, 340 (12) : 2878 - 2888
  • [3] Toughness, Forbidden Subgraphs and Pancyclicity
    Wei Zheng
    Hajo Broersma
    Ligong Wang
    [J]. Graphs and Combinatorics, 2021, 37 : 839 - 866
  • [4] Forbidden pairs for k-connected Hamiltonian graphs
    Chen, Guantao
    Egawa, Yoshimi
    Gould, Ronald J.
    Saito, Akira
    [J]. DISCRETE MATHEMATICS, 2012, 312 (05) : 938 - 942
  • [5] Characterizing Heavy Subgraph Pairs for Pancyclicity
    Binlong Li
    Bo Ning
    Hajo Broersma
    Shenggui Zhang
    [J]. Graphs and Combinatorics, 2015, 31 : 649 - 667
  • [6] Characterizing Heavy Subgraph Pairs for Pancyclicity
    Li, Binlong
    Ning, Bo
    Broersma, Hajo
    Zhang, Shenggui
    [J]. GRAPHS AND COMBINATORICS, 2015, 31 (03) : 649 - 667
  • [7] Closure and forbidden pairs for hamiltonicity
    Ryjácek, Z
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2002, 86 (02) : 331 - 346
  • [8] Pancyclicity of 3-connected graphs: Pairs of forbibben subgraphs
    Gould, RJ
    Luczak, T
    Pfender, F
    [J]. JOURNAL OF GRAPH THEORY, 2004, 47 (03) : 183 - 202
  • [9] Chorded Pancyclicity in k-Partite Graphs
    Ferrero, Daniela
    Lesniak, Linda
    [J]. GRAPHS AND COMBINATORICS, 2018, 34 (06) : 1565 - 1580
  • [10] Chorded Pancyclicity in k-Partite Graphs
    Daniela Ferrero
    Linda Lesniak
    [J]. Graphs and Combinatorics, 2018, 34 : 1565 - 1580