Energy Consumption Forecast Based on Coupling PSO-GPR

被引:0
|
作者
Wang, Xinli [1 ]
Liu, Shijian [1 ]
Yan, Liping [1 ]
Wang, Ning [2 ]
机构
[1] North China Elect Power Univ, Sch Econ & Management, Baoding 071000, Peoples R China
[2] HeBei Construct & Investment Grp CO Ltd, Shijiazhuang 050051, Hebei, Peoples R China
关键词
Gaussian Processes Regression; Particle Swarm Optimization; Prediction for energy consumption;
D O I
暂无
中图分类号
C [社会科学总论];
学科分类号
03 ; 0303 ;
摘要
Consumption for energy has a great influence on sustainable development of economy and society. The scientific and rational energy development strategy can effectively guarantee social and economic stability and orderly development and energy development strategy is inseparable from the right to accurately predict energy demand and analysis. In order to improve the accuracy of prediction of energy consumption, hybrid forecasting model for energy consumption based on Gaussian process (GPR) and Particle Swarm (PSO) is proposed. Firstly, PSO algorithm is employed to optimize two parameters in covariance function, and then the initial value of parameters are obtained; next time series are trained in GPR model for energy consumption. Under the Bayesian framework, parameters in covariance function can be optimizing again. Finally, we can forecast energy consumption in well-trained GPR model, and the results can be compared with the auto-regressive integrated moving average model and exponential smoothing models. The results show that the proposed model has good stability and high prediction accuracy. It is suitable to be applied in forecasting consumption for energy.
引用
收藏
页码:2042 / 2046
页数:5
相关论文
共 50 条
  • [1] Intelligent analysis model of landslide displacement time series based on coupling PSO-GPR
    Xu Chong
    Liu Bao-guo
    Liu Kai-yun
    Guo Jia-qi
    [J]. ROCK AND SOIL MECHANICS, 2011, 32 (06) : 1669 - 1675
  • [2] Intelligent analysis model of landslide displacement time series based on coupling PSO-GPR
    Xu, Chong
    Liu, Bao-Guo
    Liu, Kai-Yun
    Guo, Jia-Qi
    [J]. Yantu Lixue/Rock and Soil Mechanics, 2011, 32 (06): : 1669 - 1675
  • [3] Prediction method of engine performance and emission based on PSO-GPR
    Qin J.
    Zheng D.
    Pei Y.-Q.
    Lyu Y.
    Su Q.-P.
    Wang Y.-B.
    [J]. Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2022, 52 (07): : 1489 - 1498
  • [4] Study on PSO-GPR intelligent algorithm for saturated uniaxial compressive strength of rock
    Li, C. H.
    He, S. H.
    Xu, C.
    [J]. ROCK MECHANICS: ACHIEVEMENTS AND AMBITIONS, 2012, : 495 - 498
  • [5] Traffic Flow Forecasting for Road Tunnel Using PSO-GPR Algorithm with Combined Kernel Function
    Guo, Jiaqi
    Chen, Fan
    Xu, Chong
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2017, 2017
  • [6] 面向光纤光栅传感线性拟合度的PSO-GPR算法
    钱敏
    桂林
    连枭轩
    丁美琪
    王炼栋
    [J]. 光通信研究, 2024, (04) : 66 - 71
  • [7] 基于相空间重构和PSO-GPR的短时交通流预测
    李巧茹
    池维源
    陈亮
    范忠国
    郝恩强
    周志华
    [J]. 交通信息与安全, 2019, (02) : 70 - 76
  • [8] 基于PSO-GPR的发动机性能与排放预测方法
    秦静
    郑德
    裴毅强
    吕永
    苏庆鹏
    王膺博
    [J]. 吉林大学学报(工学版), 2022, 52 (07) : 1489 - 1498
  • [9] 基于PSO-GPR的短时高速公路交通量预测
    田甜
    田永宏
    [J]. 中国交通信息化, 2019, (S1) : 102 - 104
  • [10] 基于PSO-GPR的数控机床热误差建模及泛化性研究
    张蕾
    黄美发
    陈琳
    杨瑞兆
    [J]. 制造技术与机床, 2022, (02) : 135 - 139