Cylindrical convergence effects on the Rayleigh-Taylor instability in elastic and viscous media

被引:7
|
作者
Piriz, A. R. [1 ,2 ]
Piriz, S. A. [3 ,4 ]
Tahir, N. A. [5 ]
机构
[1] ETSII, Inst Invest Energet INEI, Ciudad Real 13071, Spain
[2] Univ Castilla La Mancha, CYTEMA, Ciudad Real 13071, Spain
[3] ETSIA, Inst Invest Energet INEI, Toledo 45071, Spain
[4] Univ Castilla La Mancha, CYTEMA, Toledo 45071, Spain
[5] GSI Hehnholtzzentrum Schwerionenforsch Darmstadt, Planckstr 1, D-64291 Darmstadt, Germany
关键词
SHELL;
D O I
10.1103/PhysRevE.106.015109
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Convergence effects on the perturbation growth of an imploding surface separating two nonideal material media (elastic and viscous media) are analyzed in the case of a cylindrical implosion in both the Rayleigh-Taylor stable and unstable configurations. In the stable configuration, the perturbation damping effect due to angular momentum conservation becomes destroyed for sufficiently high values of the elastic modulus or of the viscosity of the media. For the unstable configuration, Rayleigh-Taylor instability can be suppressed by the elasticity or mitigated by the viscosity, but without practically affecting the perturbation growth due to the geometrical convergence. However, the convergence effects manifest themselves in a manner somewhat different from the classical Bell-Plesset effect by making the process more sensitive to the media compressibility than in the case involving ideal media.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Viscous and elastic Rayleigh-Taylor instability at a dynamic interface in cylindrical geometry
    Wang, Y.W.
    Han, H.
    Sun, Y.B.
    Zeng, R.H.
    Physics of Plasmas, 2025, 32 (02)
  • [2] VISCOUS EFFECTS IN RAYLEIGH-TAYLOR INSTABILITY
    PLESSET, MS
    WHIPPLE, CG
    PHYSICS OF FLUIDS, 1974, 17 (01) : 1 - 7
  • [3] The cylindrical magnetic Rayleigh-Taylor instability for viscous fluids
    Chambers, K.
    Forbes, L. K.
    PHYSICS OF PLASMAS, 2012, 19 (10)
  • [4] Elastic-plastic Rayleigh-Taylor instability at a cylindrical interface
    Piriz, A. R.
    Piriz, S. A.
    Tahir, N. A.
    PHYSICAL REVIEW E, 2021, 104 (03)
  • [5] Numerical simulation of Rayleigh-Taylor instability in inviscid and viscous media
    Doludenko, A. N.
    Fortova, S. V.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2015, 55 (05) : 874 - 882
  • [6] Numerical simulation of Rayleigh-Taylor instability in inviscid and viscous media
    A. N. Doludenko
    S. V. Fortova
    Computational Mathematics and Mathematical Physics, 2015, 55 : 874 - 882
  • [7] Three-dimensional viscous Rayleigh-Taylor instability at the cylindrical interface
    Zeng, R. H.
    Tao, J. J.
    Sun, Y. B.
    PHYSICAL REVIEW E, 2020, 102 (02)
  • [8] Viscous Potential Flow Analysis of Rayleigh-Taylor Instability of Cylindrical Interface
    Asthana, Rishi
    Awasthi, Mukesh Kumar
    Agrawal, G. S.
    MECHANICAL AND AEROSPACE ENGINEERING, PTS 1-7, 2012, 110-116 : 769 - +
  • [9] Cylindrical effects in weakly nonlinear Rayleigh-Taylor instability
    Liu Wan-Hai
    Ma Wen-Fang
    Wang Xu-Lin
    CHINESE PHYSICS B, 2015, 24 (01)
  • [10] Cylindrical rotating Rayleigh-Taylor instability
    Scase, M. M.
    Sengupta, S.
    JOURNAL OF FLUID MECHANICS, 2021, 907