Integral formulae on foliated symmetric spaces

被引:14
|
作者
Rovenski, Vladimir [2 ]
Walczak, Pawel G. [1 ]
机构
[1] Uniwersytet Lodzki, PL-90238 Lodz, Poland
[2] Univ Haifa, IL-31905 Haifa, Israel
关键词
CURVATURE; LEAVES;
D O I
10.1007/s00208-011-0637-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we generalize known integral formulae (due to Brito-Langevin-Rosenberg, Ranjan and the second author) for foliations of codimension 1 or unit vector fields and obtain an infinite series of such formulae involving invariants of the Weingarten operator of a unit vector field, of the Jacobi operator in its direction, and their products. We write several such formulae explicitly, on locally symmetric spaces as well as on arbitrary Riemannian manifolds where they involve also covariant derivatives of the Jacobi operator. We work also with foliations of codimension 1 (or vector fields) which admit "good" (in a sense) singularities.
引用
收藏
页码:223 / 237
页数:15
相关论文
共 50 条
  • [1] Integral formulae on foliated symmetric spaces
    Vladimir Rovenski
    Paweł G. Walczak
    [J]. Mathematische Annalen, 2012, 352 : 223 - 237
  • [2] Integral formulae for codimension-one foliated Randers spaces
    Rovenski, Vladimir
    Walczak, Pawel
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2017, 91 (1-2): : 95 - 110
  • [3] The Newton transformation and new integral formulae for foliated manifolds
    Krzysztof Andrzejewski
    Paweł G. Walczak
    [J]. Annals of Global Analysis and Geometry, 2010, 37 : 103 - 111
  • [4] The Newton transformation and new integral formulae for foliated manifolds
    Andrzejewski, Krzysztof
    Walczak, Pawel G.
    [J]. ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2010, 37 (02) : 103 - 111
  • [5] Asymptotically foliated semi-symmetric spaces.
    Boeckx, E
    [J]. BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1995, 9B (04): : 975 - 1019
  • [6] Universal deformation formulae, symplectic lie groups and symmetric spaces
    Bieliavsky, Pierre
    Bonneau, Philippe
    Maeda, Yoshiaki
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2007, 230 (01) : 41 - 57
  • [7] Equicontinuous foliated spaces
    J. A. Álvarez. López
    A. Candel
    [J]. Mathematische Zeitschrift, 2009, 263 : 725 - 774
  • [8] Plancherel formulae for non-symmetric polar homogeneous spaces
    Huang, JS
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1996, 176 (02) : 345 - 356
  • [9] Equicontinuous foliated spaces
    Alvarez Lopez, J. A.
    Candel, A.
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2009, 263 (04) : 725 - 774
  • [10] On the boundedness of singular integral operators in symmetric spaces
    Peleshenko B.I.
    [J]. Ukrainian Mathematical Journal, 2000, 52 (7) : 1134 - 1140