Multiscale concurrent design and 3D printing of continuous fiber reinforced thermoplastic composites with optimized fiber trajectory and topological structure

被引:60
|
作者
Huang, Yiming [1 ]
Tian, Xiaoyong [1 ]
Zheng, Ziqi [1 ]
Li, Dichen [1 ]
Malakhov, Andrei V. [2 ]
Polilov, Alexander N. [2 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, 28 Xian Ning West Rd, Xian 710049, Peoples R China
[2] Russian Acad Sci, Mech Engn Res Inst, 4 Maly Kharitonyevshy Pereulok, Moscow 101990, Russia
基金
中国国家自然科学基金;
关键词
3D printing; Multiscale design; Structure optimization; Continuous fiber; Fiber reinforced composite; CONTINUOUS CARBON-FIBER; POLYMER COMPOSITES;
D O I
10.1016/j.compstruct.2022.115241
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
3D printing of continuous fiber reinforced thermoplastic composites (CFRTPCs) enables the fabrication of multiscale structures, whose features can simultaneously span the microscale fiber trajectory and macroscale topological structure. In this study, a multiscale design and manufacturing strategy integrating concurrent optimization of micro fiber orientation and macro structural topology was developed for CFRTPCs and realized by ingenious path planning for 3D printing process. Typical structures, such as Messerschmitt-Bolkow-Blohm (MBB) beam and cantilever beam, were verified experimentally in comparison with the monoscale structures. Structural stiffness and peak load could be improved by 36.27% and 64.43% respectively for MBB beam, 123.07% and 52.16% respectively for cantilever beam, showing the significant influence on concurrent material and structure design for CFRTPCs. Multiscale concurrent design and 3D printing could promote the potential of CFRTPCs, and even challenge traditional design and manufacturing mechanism relating material and structure scale.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] 3D printing for continuous fiber reinforced thermoplastic composites: mechanism and performance
    Yang, Chuncheng
    Tian, Xiaoyong
    Liu, Tengfei
    Cao, Yi
    Li, Dichen
    RAPID PROTOTYPING JOURNAL, 2017, 23 (01) : 209 - 215
  • [2] Design and 3D printing of continuous fiber reinforced heterogeneous composites
    Hou, Zhanghao
    Tian, Xiaoyong
    Zhang, Junkang
    Zhe, Lu
    Zheng, Ziqi
    Li, Dichen
    Malakhov, Andrei, V
    Polilov, Alexander N.
    COMPOSITE STRUCTURES, 2020, 237
  • [3] 3D compaction printing of a continuous carbon fiber reinforced thermoplastic
    Ueda, Masahito
    Kishimoto, Shun
    Yamawaki, Masao
    Matsuzaki, Ryosuke
    Todoroki, Akira
    Hirano, Yoshiyasu
    Le Duigou, Antoine
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2020, 137 (137)
  • [4] Research Status of and Prospects for 3D Printing for Continuous Fiber-Reinforced Thermoplastic Composites
    Yang, Yuan
    Yang, Bo
    Chang, Zhengping
    Duan, Jihao
    Chen, Weihua
    POLYMERS, 2023, 15 (17)
  • [5] 3D printing of topologically optimized wing spar with continuous carbon fiber reinforced composites
    Huang, Yiming
    Tian, Xiaoyong
    Li, Wudan
    He, Shiji
    Zhao, Peng
    Hu, Handong
    Jia, Qian
    Luo, Meng
    COMPOSITES PART B-ENGINEERING, 2024, 272
  • [6] Ultrasound-assisted 3D printing of continuous fiber-reinforced thermoplastic (FRTP) composites
    Qiao, Jing
    Li, Yingrui
    Li, Longqiu
    ADDITIVE MANUFACTURING, 2019, 30
  • [7] Separated 3D printing of continuous carbon fiber reinforced thermoplastic polyimide
    Ye, Wenli
    Lin, Guoqiang
    Wu, Wenzheng
    Geng, Peng
    Hu, Xue
    Gao, Zhiwei
    Zhao, Ji
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2019, 121 : 457 - 464
  • [8] Robotic 3D Printing of Continuous Fiber Reinforced Thermoset Composites
    Abdullah, Arif M.
    Dunn, Martin L.
    Yu, Kai
    ADVANCED MATERIALS TECHNOLOGIES, 2024,
  • [9] 3D printing of continuous fiber-reinforced thermoset composites
    He, Xu
    Ding, Yuchen
    Lei, Zepeng
    Welch, Sam
    Zhang, Wei
    Dunn, Martin
    Yu, Kai
    Additive Manufacturing, 2021, 40
  • [10] 3D printing of continuous fiber-reinforced thermoset composites
    He, Xu
    Ding, Yuchen
    Lei, Zepeng
    Welch, Sam
    Zhang, Wei
    Dunn, Martin
    Yu, Kai
    ADDITIVE MANUFACTURING, 2021, 40