Automatic malware classification and new malware detection using machine learning

被引:63
|
作者
Liu, Liu [1 ]
Wang, Bao-sheng [1 ]
Yu, Bo [1 ]
Zhong, Qiu-xi [1 ]
机构
[1] Natl Univ Def Technol, Coll Comp, Changsha 410073, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Malware classification; Machine learning; n-gram; Gray-scale image; Feature extraction; Malware detection;
D O I
10.1631/FITEE.1601325
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The explosive growth of malware variants poses a major threat to information security. Traditional anti-virus systems based on signatures fail to classify unknown malware into their corresponding families and to detect new kinds of malware programs. Therefore, we propose a machine learning based malware analysis system, which is composed of three modules: data processing, decision making, and new malware detection. The data processing module deals with gray-scale images, Opcode n-gram, and import functions, which are employed to extract the features of the malware. The decision-making module uses the features to classify the malware and to identify suspicious malware. Finally, the detection module uses the shared nearest neighbor (SNN) clustering algorithm to discover new malware families. Our approach is evaluated on more than 20 000 malware instances, which were collected by Kingsoft, ESET NOD32, and Anubis. The results show that our system can effectively classify the unknown malware with a best accuracy of 98.9%, and successfully detects 86.7% of the new malware.
引用
收藏
页码:1336 / 1347
页数:12
相关论文
共 50 条
  • [1] Automatic malware classification and new malware detection using machine learning
    Liu Liu
    Bao-sheng Wang
    Bo Yu
    Qiu-xi Zhong
    [J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18 : 1336 - 1347
  • [2] A Novel Malware Analysis for Malware Detection and Classification using Machine Learning Algorithms
    Sethi, Kamalakanta
    Chaudhary, Shankar Kumar
    Tripathy, Bata Krishan
    Bera, Padmalochan
    [J]. SIN'17: PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON SECURITY OF INFORMATION AND NETWORKS, 2017, : 107 - 113
  • [3] A Novel Malware Analysis Framework for Malware Detection and Classification using Machine Learning Approach
    Sethi, Kamalakanta
    Chaudhary, Shankar Kumar
    Tripathy, Bata Krishan
    Bera, Padmalochan
    [J]. ICDCN'18: PROCEEDINGS OF THE 19TH INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING AND NETWORKING, 2018,
  • [4] Malware Classification Using Machine Learning
    Savard, Nolan
    Feinauer, David M.
    Alghazo, Jaafar M.
    Abdelhamid, Sherif E.
    [J]. SOUTHEASTCON 2024, 2024, : 843 - 847
  • [5] Malware Detection and Classification with Machine Learning Algorithms
    Kumar, R. Vinoth
    Islam, Md Mojahidul
    Apon, Abir Hossain
    Prantha, C. S.
    [J]. SMART TRENDS IN COMPUTING AND COMMUNICATIONS, VOL 5, SMARTCOM 2024, 2024, 949 : 143 - 158
  • [6] Malware Detection Using Machine Learning
    Kumar, Ajay
    Abhishek, Kumar
    Shah, Kunjal
    Patel, Divy
    Jain, Yash
    Chheda, Harsh
    Nerurka, Pranav
    [J]. KNOWLEDGE GRAPHS AND SEMANTIC WEB, KGSWC 2020, 2020, 1232 : 61 - 71
  • [7] Study on Machine Learning Techniques for Malware Classification and Detection
    Moon, Jaewoong
    Kim, Subin
    Song, Jaeseung
    Kim, Kyungshin
    [J]. KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2021, 15 (12): : 4308 - 4325
  • [8] Zero-Day Malware Classification and Detection Using Machine Learning
    Kumar J.
    Rajendran B.
    Sudarsan S.D.
    [J]. SN Computer Science, 5 (1)
  • [9] FEATURE SELECTION AND MACHINE LEARNING CLASSIFICATION FOR MALWARE DETECTION
    Khammas, Ban Mohammed
    Monemi, Alireza
    Bassi, Joseph Stephen
    Ismail, Ismahani
    Nor, Sulaiman Mohd
    Marsono, Muhammad Nadzir
    [J]. JURNAL TEKNOLOGI, 2015, 77 (01):
  • [10] Automatic analysis of malware behavior using machine learning
    Rieck, Konrad
    Trinius, Philipp
    Willems, Carsten
    Holz, Thorsten
    [J]. JOURNAL OF COMPUTER SECURITY, 2011, 19 (04) : 639 - 668