Construction of Maxwell Points in Left-Invariant Optimal Control Problems

被引:0
|
作者
Podobryaev, A., V [1 ]
机构
[1] Russian Acad Sci, Ailamazyan Program Syst Inst, Pereslavl Zalesskii 152021, Yaroslavl Regio, Russia
基金
俄罗斯科学基金会;
关键词
Symmetry; Maxwell points; cut locus; geometric control theory; Riemannian geometry; sub-Riemannian geometry; SYMMETRIES;
D O I
10.1134/S008154382105014X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider left-invariant optimal control problems on connected Lie groups. The Pontryagin maximum principle gives necessary optimality conditions. Namely, the extremal trajectories are the projections of trajectories of the corresponding Hamiltonian system on the cotangent bundle of the Lie group. The Maxwell points (i.e., the points where two different extremal trajectories meet each other) play a key role in the study of optimality of extremal trajectories. The reason is that an extremal trajectory cannot be optimal after a Maxwell point. We introduce a general construction for Maxwell points depending on the algebraic structure of the Lie group.
引用
收藏
页码:190 / 197
页数:8
相关论文
共 50 条