RGB-D Local Implicit Function for Depth Completion of Transparent Objects

被引:41
|
作者
Zhu, Luyang [1 ,2 ]
Mousavian, Arsalan [2 ]
Xiang, Yu [2 ]
Mazhar, Hammad [2 ]
van Eenbergen, Jozef [2 ]
Debnath, Shoubhik [2 ]
Fox, Dieter [1 ,2 ]
机构
[1] Univ Washington, Seattle, WA 98195 USA
[2] NVIDIA, Santa Clara, CA 95051 USA
关键词
D O I
10.1109/CVPR46437.2021.00462
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Majority of the perception methods in robotics require depth information provided by RGB-D cameras. However, standard 3D sensors fail to capture depth of transparent objects due to refraction and absorption of light. In this paper, we introduce a new approach for depth completion of transparent objects from a single RGB-D image. Key to our approach is a local implicit neural representation built on ray-voxel pairs that allows our method to generalize to unseen objects and achieve fast inference speed. Based on this representation, we present a novel framework that can complete missing depth given noisy RGBD input. We further improve the depth estimation iteratively using a self-correcting refinement model. To train the whole pipeline, we build a large scale synthetic dataset with transparent objects. Experiments demonstrate that our method performs significantly better than the current stateof-the-art methods on both synthetic and real world data. In addition, our approach improves the inference speed by a factor of 20 compared to the previous best method, ClearGrasp [43].
引用
下载
收藏
页码:4647 / 4656
页数:10
相关论文
共 50 条
  • [1] RGB-D SLAM with Deep Depth Completion
    Serhatoglu, Ali Osman
    Guclu, Oguzhan
    Can, Ahmet Burak
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2022, PT II, 2023, 13589 : 59 - 67
  • [2] Unsupervised Depth Completion and Denoising for RGB-D Sensors
    Fan, Lei
    Li, Yunxuan
    Jiang, Chen
    Wu, Ying
    2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA 2022, 2022, : 8734 - 8740
  • [3] Deep Depth Completion of a Single RGB-D Image
    Zhang, Yinda
    Funkhouser, Thomas
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 175 - 185
  • [4] Deep RGB-D Canonical Correlation Analysis For Sparse Depth Completion
    Zhong, Yiqi
    Wu, Cho-Ying
    You, Suya
    Neumann, Ulrich
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [5] Fusing Depth and Silhouette for Scanning Transparent Object with RGB-D Sensor
    Ji, Yijun
    Xia, Qing
    Zhang, Zhijiang
    INTERNATIONAL JOURNAL OF OPTICS, 2017, 2017
  • [6] CostDCNet: Cost Volume Based Depth Completion for a Single RGB-D Image
    Kam, Jaewon
    Kim, Jungeon
    Kim, Soongjin
    Park, Jaesik
    Lee, Seungyong
    COMPUTER VISION - ECCV 2022, PT II, 2022, 13662 : 257 - 274
  • [7] High-Quality Depth Map Upsampling and Completion for RGB-D Cameras
    Park, Jaesik
    Kim, Hyeongwoo
    Tai, Yu-Wing
    Brown, Michael S.
    Kweon, In So
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (12) : 5559 - 5572
  • [8] Layer Depth Denoising and Completion for Structured-Light RGB-D Cameras
    Shen, Ju
    Cheung, Sen-ching S.
    2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, : 1187 - 1194
  • [9] Consistent Depth Prediction for Transparent Object Reconstruction from RGB-D Camera
    Cai, Yuxiang
    Zhu, Yifan
    Zhang, Haiwei
    Ren, Bo
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 3436 - 3445
  • [10] FDCT: Fast Depth Completion for Transparent Objects
    Li, Tianan
    Chen, Zhehan
    Liu, Huan
    Wang, Chen
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (09) : 5823 - 5830