MAIN: Multi-Attention Instance Network for video segmentation

被引:0
|
作者
Alcazar, Juan Leon [1 ]
Bravo, Maria A. [3 ]
Jeanneret, Guillaume [2 ]
Thabet, Ali K. [1 ]
Brox, Thomas [3 ]
Arbelaez, Pablo [2 ]
Ghanem, Bernard [1 ]
机构
[1] King Abdullah Univ Sci & Technol, Thuwal, Saudi Arabia
[2] Univ Los Andes, Bogota, Colombia
[3] Univ Freiburg, Freiburg, Germany
关键词
Video object segmentation; Attention mechanism; Deep learning;
D O I
10.1016/j.cviu.2021.103240
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Instance-level video segmentation requires a solid integration of spatial and temporal information. However, current methods rely mostly on domain-specific information (online learning) to produce accurate instance level segmentations. We propose a novel approach that relies exclusively on the integration of generic spatio-temporal attention cues. Our strategy, named Multi-Attention Instance Network (MAIN), overcomes challenging segmentation scenarios over arbitrary videos without modeling sequence-or instance-specific knowledge. We design MAIN to segment multiple instances in a single forward pass, and optimize it with a novel loss function that favors class agnostic predictions and assigns instance-specific penalties. We achieve state-of-the-art performance on the challenging Youtube-VOS dataset and benchmark, improving the unseen Jaccard and F-Metric by 6.8% and 12.7% respectively, while operating at real-time (30.3 FPS).
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Multi-Attention Network for Unsupervised Video Object Segmentation
    Zhang, Guifang
    Wong, Hon-Cheng
    Lo, Sio-Long
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 71 - 75
  • [2] Multi-Attention Network for Compressed Video Referring Object Segmentation
    Chen, Weidong
    Hong, Dexiang
    Qi, Yuankai
    Han, Zhenjun
    Wang, Shuhui
    Qing, Laiyun
    Huang, Qingming
    Li, Guorong
    [J]. PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 4416 - 4425
  • [3] Multi-attention multiple instance learning
    Andrei V. Konstantinov
    Lev V. Utkin
    [J]. Neural Computing and Applications, 2022, 34 : 14029 - 14051
  • [4] Multi-attention multiple instance learning
    Konstantinov, Andrei, V
    Utkin, Lev, V
    [J]. NEURAL COMPUTING & APPLICATIONS, 2022, 34 (16): : 14029 - 14051
  • [5] MACNet: Multi-Attention and Context Network for Polyp Segmentation
    Hao, Xiuzhen
    Pan, Haiwei
    Zhang, Kejia
    Chen, Chunling
    Bian, Xiaofei
    He, Shuning
    [J]. WEB AND BIG DATA, PT II, APWEB-WAIM 2022, 2023, 13422 : 369 - 384
  • [6] Polyp Segmentation Network Combined With Multi-Attention Mechanism
    Jia L.
    Hu Y.
    Jin Y.
    Xue Z.
    Jiang Z.
    Zheng Q.
    [J]. Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2023, 35 (03): : 463 - 473
  • [7] Multi-Attention Convolutional Neural Network for Video Deblurring
    Zhang, Xiaoqin
    Wang, Tao
    Jiang, Runhua
    Zhao, Li
    Xu, Yuewang
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (04) : 1986 - 1997
  • [8] A Multi-scale and Multi-attention Network for Skin Lesion Segmentation
    Wu, Cong
    Zhang, Hang
    Chen, Dingsheng
    Gan, Haitao
    [J]. NEURAL INFORMATION PROCESSING, ICONIP 2023, PT IV, 2024, 14450 : 537 - 550
  • [9] Spatio-temporal Attention Network for Video Instance Segmentation
    Liu, Xiaoyu
    Ren, Haibing
    Ye, Tingmeng
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 725 - 727
  • [10] MAFUNet: Multi-Attention Fusion Network for Medical Image Segmentation
    Wang, Lili
    Zhao, Jiayu
    Yang, Hailu
    [J]. IEEE ACCESS, 2023, 11 : 109793 - 109802