Genome analysis of a major urban malaria vector mosquito, Anopheles stephensi

被引:84
|
作者
Jiang, Xiaofang [1 ,2 ]
Peery, Ashley [3 ]
Hall, Brantley [1 ,2 ]
Sharma, Atashi [3 ]
Chen, Xiao-Guang [4 ]
Waterhouse, Robert M. [5 ,6 ,7 ,8 ]
Komissarov, Aleksey [9 ,10 ]
Riehle, Michelle M. [11 ]
Shouche, Yogesh [12 ]
Sharakhova, Maria V. [3 ]
Lawson, Dan [13 ]
Pakpour, Nazzy [14 ]
Arensburger, Peter [15 ]
Davidson, Victoria L. M. [16 ]
Eiglmeier, Karin [17 ,18 ]
Emrich, Scott [19 ]
George, Phillip [3 ]
Kennedy, Ryan C. [20 ]
Mane, Shrinivasrao P. [21 ]
Maslen, Gareth [12 ]
Oringanje, Chioma [22 ]
Qi, Yumin [2 ]
Settlage, Robert [23 ]
Tojo, Marta [22 ]
Tubio, Jose M. C. [24 ]
Unger, Maria F. [25 ]
Wang, Bo [14 ]
Vernick, Kenneth D. [17 ,18 ]
Ribeiro, Josem C. [26 ]
James, Anthony A. [27 ,28 ]
Michel, Kristin [17 ,18 ]
Riehle, Michael A. [22 ]
Luckhart, Shirley [14 ]
Sharakhov, Igor V. [1 ,3 ]
Tu, Zhijian [1 ,2 ]
机构
[1] Virginia Tech, Program Genet Bioinformat & Computat Biol, Blacksburg, VA 24061 USA
[2] Virginia Tech, Dept Biochem, Blacksburg, VA USA
[3] Virginia Tech, Dept Entomol, Blacksburg, VA USA
[4] Southern Med Univ, Dept Pathogen Biol, Guangzhou, Guangdong, Peoples R China
[5] Univ Geneva, Sch Med, Dept Genet Med & Dev, CH-1211 Geneva, Switzerland
[6] Swiss Inst Bioinformat, CH-1211 Geneva, Switzerland
[7] MIT, Comp Sci & Artificial Intelligence Lab, Cambridge, MA 02139 USA
[8] Broad Inst MIT & Harvard, Cambridge, MA USA
[9] St Petersburg State Univ, Theodosius Dobzhansky Ctr Genome Bioinformat, St Petersburg 199034, Russia
[10] Russian Acad Sci, Inst Cytol, St Petersburg 194064, Russia
[11] Univ Minnesota, Dept Microbiol, Minneapolis, MN 55455 USA
[12] Pune Univ Campus, Natl Ctr Cell Sci, Pune, Maharashtra, India
[13] European Bioinformat Inst, Mol Biol Lab, Cambridge CB10 1SD, England
[14] Univ Calif Davis, Dept Med Microbiol & Immunol, Davis, CA 95616 USA
[15] Calif State Polytech Univ Pomona, Dept Biol Sci, Pomona, CA 91768 USA
[16] Kansas State Univ, Div Biol, Manhattan, KS 66506 USA
[17] Inst Pasteur, Dept Parasitol & Mycol, Unit Insect Vector Genet & Genom, Paris, France
[18] CNRS, Unit Hosts, Vectors & Pathogens URA3012, Paris, France
[19] Univ Notre Dame, Dept Comp Sci & Engn, Notre Dame, IN 46556 USA
[20] Univ Calif San Francisco, Dept Bioengn & Therapeut Sci, San Francisco, CA 94143 USA
[21] Virginia Tech, Virginia Bioinformat Inst, Blacksburg, VA USA
[22] Univ Arizona, Dept Entomol, Tucson, AZ 85721 USA
[23] Univ Santiago de Compostela, Inst Invest Sanitarias, Sch Med CIMUS, Santiago De Compostela, Spain
[24] Wellcome Trust Sanger Inst, Hinxton, Cambs, England
[25] Univ Notre Dame, Dept Biol Sci, Notre Dame, IN 46556 USA
[26] NIAID, Sect Vector Biol, Lab Malaria & Vector Res, Rockville, MD USA
[27] Univ Calif Irvine, Dept Microbiol & Mol Genet, Irvine, CA 92717 USA
[28] Univ Calif Irvine, Dept Mol Biol & Biochem, Irvine, CA 92717 USA
来源
GENOME BIOLOGY | 2014年 / 15卷 / 09期
基金
美国国家科学基金会;
关键词
CHROMOSOMAL REARRANGEMENT; INVERSION POLYMORPHISMS; NUCLEAR LAMINS; AEDES-AEGYPTI; IN-SILICO; GENE; RNA; EVOLUTION; SEQUENCE; GAMBIAE;
D O I
10.1186/s13059-014-0459-2
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Anopheles stephensi is the key vector of malaria throughout the Indian subcontinent and Middle East and an emerging model for molecular and genetic studies of mosquito-parasite interactions. The type form of the species is responsible for the majority of urban malaria transmission across its range. Results: Here, we report the genome sequence and annotation of the Indian strain of the type form of An. stephensi. The 221 Mb genome assembly represents more than 92% of the entire genome and was produced using a combination of 454, Illumina, and PacBio sequencing. Physical mapping assigned 62% of the genome onto chromosomes, enabling chromosome-based analysis. Comparisons between An. stephensi and An. gambiae reveal that the rate of gene order reshuffling on the X chromosome was three times higher than that on the autosomes. An. stephensi has more heterochromatin in pericentric regions but less repetitive DNA in chromosome arms than An. gambiae. We also identify a number of Y-chromosome contigs and BACs. Interspersed repeats constitute 7.1% of the assembled genome while LTR retrotransposons alone comprise more than 49% of the Y contigs. RNA-seq analyses provide new insights into mosquito innate immunity, development, and sexual dimorphism. Conclusions: The genome analysis described in this manuscript provides a resource and platform for fundamental and translational research into a major urban malaria vector. Chromosome-based investigations provide unique perspectives on Anopheles chromosome evolution. RNA-seq analysis and studies of immunity genes offer new insights into mosquito biology and mosquito-parasite interactions.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Genome analysis of a major urban malaria vector mosquito, Anopheles stephensi
    Xiaofang Jiang
    Ashley Peery
    A Brantley Hall
    Atashi Sharma
    Xiao-Guang Chen
    Robert M Waterhouse
    Aleksey Komissarov
    Michelle M Riehle
    Yogesh Shouche
    Maria V Sharakhova
    Dan Lawson
    Nazzy Pakpour
    Peter Arensburger
    Victoria L M Davidson
    Karin Eiglmeier
    Scott Emrich
    Phillip George
    Ryan C Kennedy
    Shrinivasrao P Mane
    Gareth Maslen
    Chioma Oringanje
    Yumin Qi
    Robert Settlage
    Marta Tojo
    Jose M C Tubio
    Maria F Unger
    Bo Wang
    Kenneth D Vernick
    Jose M C Ribeiro
    Anthony A James
    Kristin Michel
    Michael A Riehle
    Shirley Luckhart
    Igor V Sharakhov
    Zhijian Tu
    [J]. Genome Biology, 15
  • [2] Experimental population modification of the malaria vector mosquito, Anopheles stephensi
    Thai Binh Pham
    Celine Hien Phong
    Bennett, Jared B.
    Hwang, Kristy
    Jasinskiene, Nijole
    Parker, Kiona
    Stillinger, Drusilla
    Marshall, John M.
    Carballar-Lejaraz, Rebeca
    James, Anthony A.
    [J]. PLOS GENETICS, 2019, 15 (12):
  • [3] Anopheles stephensi (Asian Malaria Mosquito)
    Ishtiaq, Farah
    Swain, Sunita
    Kumar, S. Sampath
    [J]. TRENDS IN PARASITOLOGY, 2021, 37 (06) : 571 - 572
  • [4] piRNA pathway gene expression in the malaria vector mosquito Anopheles stephensi
    Macias, V.
    Coleman, J.
    Bonizzoni, M.
    James, A. A.
    [J]. INSECT MOLECULAR BIOLOGY, 2014, 23 (05) : 579 - 586
  • [5] PROTEOGENOMIC ANALYSIS OF INDIAN VECTOR OF MALARIA, ANOPHELES STEPHENSI
    Keshava, Prasad T. S.
    Kumar, Manish
    Mohanty, Ajeet Kumar
    Sreenivasamurthy, Sreelakshmi K.
    Gupta, Manoj Kumar
    Dey, Gourav
    Harsha, H. C.
    Pandey, Akhilesh
    Kumar, Ahswani
    [J]. PATHOGENS AND GLOBAL HEALTH, 2013, 107 (08) : 430 - 431
  • [6] Development of a population suppression strain of the human malaria vector mosquito, Anopheles stephensi
    Osvaldo Marinotti
    Nijole Jasinskiene
    Aniko Fazekas
    Sarah Scaife
    Guoliang Fu
    Stefanie T Mattingly
    Karissa Chow
    David M Brown
    Luke Alphey
    Anthony A James
    [J]. Malaria Journal, 12
  • [7] “Salivary gland cellular architecture in the Asian malaria vector mosquito Anopheles stephensi”
    Michael B. Wells
    Deborah J. Andrew
    [J]. Parasites & Vectors, 8
  • [8] Salivary gland cellular architecture in the Asian malaria vector mosquito Anopheles stephensi
    Wells, Michael B.
    Andrew, Deborah J.
    [J]. PARASITES & VECTORS, 2015, 8
  • [9] Development of a population suppression strain of the human malaria vector mosquito, Anopheles stephensi
    Marinotti, Osvaldo
    Jasinskiene, Nijole
    Fazekas, Aniko
    Scaife, Sarah
    Fu, Guoliang
    Mattingly, Stefanie T.
    Chow, Karissa
    Brown, David M.
    Alphey, Luke
    James, Anthony A.
    [J]. MALARIA JOURNAL, 2013, 12
  • [10] Population genetic structure of urban malaria vector Anopheles stephensi in India
    Sharma, Richa
    Sharma, Arvind
    Kumar, Ashwani
    Dube, Madhulika
    Gakhar, S. K.
    [J]. INFECTION GENETICS AND EVOLUTION, 2016, 39 : 35 - 44