Characterizing groundwater heat transport in a complex lowland aquifer using paleo-temperature reconstruction, satellite data, temperature-depth profiles, and numerical models

被引:0
|
作者
Casillas-Trasvina, Alberto [1 ,2 ]
Rogiers, Bart [1 ]
Beerten, Koen [1 ]
Wouters, Laurent [3 ]
Walraevens, Kristine [2 ]
机构
[1] Belgian Nucl Res Ctr, Inst Environm Hlth & Safety, SCK CEN, Boeretang 200, B-2400 Mol, Belgium
[2] Univ Ghent, Dept Geol, Lab Appl Geol & Hydrogeol, Krijgslaan 281-S8, B-9000 Ghent, Belgium
[3] Belgian Agcy Radioact Waste & Enriched Fissile Ma, ONDRAF NIRAS, Long Term Management Dept, Kunstlaan 14, B-1210 Brussels, Belgium
关键词
LAND-SURFACE TEMPERATURE; NEOGENE AQUIFER; TRAVEL-TIME; FLOW; WATER; EXCHANGE; FLUXES; OPTIMIZATION; CLIMATOLOGY; VARIABILITY;
D O I
10.5194/hess-26-5577-2022
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Heat is a naturally occurring, widespread groundwater tracer that can be used to identify flow patterns in groundwater systems. Temperature measurements, being relatively inexpensive and effortless to gather, represent a valuable source of information which can be exploited to reduce uncertainties on groundwater flow, and, for example, support performance assessment studies on waste disposal sites. In a lowland setting, however, hydraulic gradients are typically small, and whether temperature measurements can be used to inform us about catchment-scale groundwater flow remains an open question. For the Neogene Aquifer in Flanders, groundwater flow and solute transport models have been developed in the framework of safety and feasibility studies for the underlying Boom Clay formation as a potential host rock for geological disposal of radioactive waste. However, the simulated fluxes by these models are still subject to large uncertainties as they are typically constrained by hydraulic heads only. In the current study, we use a state-of-the-art 3D steady-state groundwater flow model, calibrated against hydraulic head measurements, to build a 3D transient heat transport model, for assessing the use of heat as an additional state variable, in a lowland setting and at the catchment scale. We therefore use temperature-depth (TD) profiles as additional state variable observations for inverse conditioning. Furthermore, a Holocene paleo-temperature time curve was constructed based on paleo-temperature reconstructions in Europe from several sources in combination with land surface temperature (LST) remotely sensed monthly data from 2001 to 2019 (retrieved from NASA's Moderate Resolution Imaging Spectroradiometer, MODIS). The aim of the research is to understand the mechanisms of heat transport and to characterize the temperature distribution and dynamics in the Neogene Aquifer. The simulation results clearly underline advection/convection and conduction as the major heat transport mechanisms, with a reduced role of advection/convection in zones where flux magnitudes are low, which suggests that temperature is also a useful indicator in a lowland setting. Furthermore, the performed scenarios highlight the important roles of (i) surface hydrological features and withdrawals driving local groundwater flow systems and (ii) the inclusion of subsurface features like faults in the conceptualization and development of hydrogeological investigations. These findings serve as a proxy of the influence of advective transport and barrier/conduit role of faults, particularly for the Rauw fault in this case, and suggest that solutes released from the Boom Clay might be affected in similar ways.
引用
收藏
页码:5577 / 5604
页数:28
相关论文
共 3 条
  • [1] Groundwater flow estimation using temperature-depth profiles in a complex environment and a changing climate
    Irvine, Dylan J.
    Kurylyk, Barret L.
    Cartwright, Ian
    Bonham, Mariah
    Post, Vincent E. A.
    Banks, Eddie W.
    Simmons, Craig T.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2017, 574 : 272 - 281
  • [2] Interdependence Between River Aquifer Groundwater Flow and Temperature-Depth Profiles: Type Curves Based on Pi Theorem and Numerical Simulations
    Jimenez-Valera, Jose Antonio
    Alhama, Ivan
    Duque, Carlos
    Labat, David
    APPLIED SCIENCES-BASEL, 2025, 15 (02):
  • [3] Using transient temperature-depth profiles to assess vertical groundwater flow across semi-confining layers in the Chianan coastal plain aquifer systeme, southern Taiwan
    Chen, Wenfu
    Bense, Victor F.
    HYDROGEOLOGY JOURNAL, 2019, 27 (06) : 2155 - 2166