Sobolev embedding theorems for spaces Wk,p(x)(Ω)

被引:556
|
作者
Fan, XL [1 ]
Shen, JS [1 ]
Zhao, D [1 ]
机构
[1] Lanzhou Univ, Dept Math, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
generalized Lebesgue-Sobolev spaces; embedding; integrals;
D O I
10.1006/jmaa.2001.7618
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper gives a Sobolev-type embedding theorem for the generalized Lebesgue-Sobolev space W-k.p(x)(Omega), where Omega is an open domain in R-N(N greater than or equal to 2) with cone property, and p(x) is a Lipschitz continuous function defined on fl satisfying 1 < p(-) less than or equal to p(+) < p(+) < N/k. The main result can be stated as follows: for any measurable function q(x)(x epsilon <(<Omega>)over bar>) with p(x) less than or equal to q(x) less than or equal to p(*)(x) := Np(x)/Np(x)/N - kp(x), there exists a continuous embedding from W-k,W-p(x)(Omega) to L-q(x)(Omega). (C) 2001 Academic Press.
引用
收藏
页码:749 / 760
页数:12
相关论文
共 50 条