Oxygen-enriched electrolytes based on perfluorochemicals for high-capacity lithium-oxygen batteries

被引:32
|
作者
Nishikami, Yuki [1 ]
Konishi, Toshihiro [1 ]
Omoda, Ryo [2 ]
Aihara, Yuichi [2 ]
Oyaizu, Kenichi [1 ]
Nishide, Hiroyuki [1 ]
机构
[1] Waseda Univ, Dept Appl Chem, Tokyo 1698555, Japan
[2] Samsung R&D Inst Japan Co, Osaka 5620036, Japan
关键词
NONAQUEOUS LI-O-2 BATTERIES; BLOOD SUBSTITUTES; AIR BATTERY; PERFORMANCE; TRANSPORT; PERMEATION; SOLUBILITY; REDUCTION; STABILITY; MEMBRANES;
D O I
10.1039/c5ta02219c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrolytes highly enriched with oxygen for lithium-oxygen (Li-O-2) batteries were prepared by combining perfluorohexyl bromide as an oxygen-uptake perfluorochemical (PFC) medium with lithium perfluorooctane sulfonate (LiPFOS) as a perfluoro-surfactant and a supporting electrolyte, which allowed an exceptionally high miscibility of PFCs with tetraethylene glycol dimethyl ether (TEGDME). The electrochemical reduction current of oxygen was enhanced three times in the LiPFOS-TEGDME electrolyte with ca. 60 wt% PFC content in comparison with that of a conventional Li-O-2 battery electrolyte, which was ascribed to the high oxygen solubility of the electrolyte. A Li-O-2 cell fabricated with the PFC-based electrolyte exhibited an excellent discharging capacity of 6500 mA h g(-1) which was approximately 1.5 times higher than that obtained with the conventional electrolyte.
引用
收藏
页码:10845 / 10850
页数:6
相关论文
共 50 条
  • [1] Nitrogen enriched mesoporous carbon as a high capacity cathode in lithium-oxygen batteries
    Nie, Hongjiao
    Zhang, Huamin
    Zhang, Yining
    Liu, Tao
    Li, Jing
    Lai, Qinzhi
    NANOSCALE, 2013, 5 (18) : 8484 - 8487
  • [2] Review of Electrolytes in Nonaqueous Lithium-Oxygen Batteries
    Guo, Haipeng
    Luo, Wenbin
    Chen, Jun
    Chou, Shulei
    Liu, Huakun
    Wang, Jiazhao
    ADVANCED SUSTAINABLE SYSTEMS, 2018, 2 (8-9):
  • [3] Preparation of a New Carbon Nanofiber as a High-Capacity Air Electrode for Nonaqueous Lithium-Oxygen Batteries
    Xu, Chunyang
    Dai, Jicui
    Teng, Xiangguo
    Zhu, Yongming
    CHEMCATCHEM, 2016, 8 (24) : 3725 - 3731
  • [4] Recent Advances in Electrolytes for Nonaqueous Lithium-Oxygen Batteries
    Chen, Chunguang
    Liu, Jia
    Liu, Zhenqian
    Xue, Jiayi
    Cui, Xi
    Liu, Wenhan
    Cheng, Ping
    Huang, Tao
    Yu, Aishui
    CHEMICAL RECORD, 2025,
  • [5] Nanoengineered Ultralight and Robust All-Metal Cathode for High-Capacity, Stable Lithium-Oxygen Batteries
    Xu, Ji-Jing
    Chang, Zhi-Wen
    Yin, Yan-Bin
    Zhang, Xin-Bo
    ACS CENTRAL SCIENCE, 2017, 3 (06) : 598 - 604
  • [6] Singlet Oxygen in Lithium-Oxygen Batteries
    Hong, Misun
    Byon, Hye Ryung
    BATTERIES & SUPERCAPS, 2021, 4 (02) : 286 - 293
  • [7] Enhanced oxygen reduction and evolution by in situ decoration of hematite nanoparticles on carbon nanotube cathodes for high-capacity nonaqueous lithium-oxygen batteries
    Jee, Sang-Won
    Choi, Woongchul
    Ahn, Cheol Hyoun
    Yang, Gang
    Cho, Hyung Koun
    Lee, Jung-Ho
    Yu, Choongho
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (26) : 13767 - 13775
  • [8] Using polyoxometalates to enhance the capacity of lithium-oxygen batteries
    Homewood, Tom
    Frith, James T.
    Vivek, J. Padmanabhan
    Casan-Pastor, Nieves
    Tonti, Dino
    Owen, John R.
    Garcia-Araez, Nuria
    CHEMICAL COMMUNICATIONS, 2018, 54 (69) : 9599 - 9602
  • [9] Mechanistic Study on Oxygen Reduction Reaction in High-Concentrated Electrolytes for Aprotic Lithium-Oxygen Batteries
    Su, Yuwei
    Zhao, Zhiwei
    Wang, Erkang
    Peng, Zhangquan
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2024, 15 (40): : 10111 - 10117
  • [10] Sluggish Li2O2 dissolution - a key to unlock high-capacity lithium-oxygen batteries
    He, Lu
    Wang, Shuo
    Yu, Fengjiao
    Chen, Yuhui
    CHEMICAL SCIENCE, 2025, 16 (02) : 627 - 636