Nonlinear Mixed-Effects Growth Models: A Tutorial Using 'saemix' in R

被引:5
|
作者
Boedeker, Peter [1 ]
机构
[1] Boise State Univ, Dept Curriculum Instruct & Foundatonal Studies, Boise, ID 83725 USA
关键词
nonlinear growth; Gompertz; tutorial; R; PACKAGE;
D O I
10.5964/meth.7061
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
Modeling growth across repeated measures of individuals and evaluating predictors of growth can reveal developmental patterns and factors that affect those patterns. When growth follows a sigmoidal shape, the Logistic, Gompertz, and Richards nonlinear growth curves are plausible. These functions have parameters that specifically control the starting point, total growth, overall rate of change, and point of greatest growth. Variability in growth parameters across individuals can be explained by covariates in a mixed model framework. The purpose of this tutorial is to provide analysts a brief introduction to these growth curves and demonstrate their application. The 'saemix' package in R is used to fit models to simulated data to answer specific research questions. Enough code is provided in-text to describe how to execute the analyses with the complete code and data provided in Supplementary Materials.
引用
收藏
页码:250 / 270
页数:21
相关论文
共 50 条
  • [1] Modeling Tree Diameter Growth Using Nonlinear Mixed-Effects Models
    Jiang, Lichun
    Li, Fengri
    2008 INTERNATIONAL SEMINAR ON FUTURE INFORMATION TECHNOLOGY AND MANAGEMENT ENGINEERING, PROCEEDINGS, 2008, : 636 - 639
  • [2] PModeling Tree Height Growth Using Nonlinear Mixed-Effects Models
    Jiang, Lichun
    Li, Yaoxiang
    PROCEEDINGS OF FIRST INTERNATIONAL CONFERENCE OF MODELLING AND SIMULATION, VOL I: MODELLING AND SIMULATION IN SCIENCE AND TECHNOLOGY, 2008, : 435 - 437
  • [3] Linear Mixed-Effects Models in chemistry: A tutorial
    Carnoli, Andrea Junior
    Lohuis, Petra oude
    Buydens, Lutgarde M. C.
    Tinnevelt, Gerjen H.
    Jansen, Jeroen J.
    ANALYTICA CHIMICA ACTA, 2024, 1304
  • [4] Parameter Estimation in Nonlinear Mixed Effect Models Using saemix, an R Implementation of the SAEM Algorithm
    Comets, Emmanuelle
    Lavenu, Audrey
    Lavielle, Marc
    JOURNAL OF STATISTICAL SOFTWARE, 2017, 80 (03): : 1 - 41
  • [5] Nonlinear Mixed-Effects Modeling Programs in R
    Stegmann, Gabriela
    Jacobucci, Ross
    Harring, Jeffrey R.
    Grimm, Kevin J.
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2018, 25 (01) : 160 - 165
  • [6] Randomly Truncated Nonlinear Mixed-Effects Models
    Carolina Costa Mota Paraíba
    Carlos Alberto Ribeiro Diniz
    Journal of Agricultural, Biological, and Environmental Statistics, 2016, 21 : 295 - 313
  • [7] Randomly Truncated Nonlinear Mixed-Effects Models
    Mota Paraiba, Carolina Costa
    Ribeiro Diniz, Carlos Alberto
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2016, 21 (02) : 295 - 313
  • [8] Influence analyses of nonlinear mixed-effects models
    Lee, SY
    Xu, L
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2004, 45 (02) : 321 - 341
  • [9] Nonlinear Mixed-Effects Models for PET Data
    Chen, Yakuan
    Goldsmith, Jeff
    Ogden, R. Todd
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2019, 66 (03) : 881 - 891
  • [10] Improved Calibration of Nonlinear Mixed-Effects Models Demonstrated on a Height Growth Function
    Meng, Shawn X.
    Huang, Shongming
    FOREST SCIENCE, 2009, 55 (03) : 238 - 248