Quasi-synchronisation of fractional-order memristor-based neural networks with parameter mismatches

被引:100
|
作者
Huang, Xia [1 ]
Fan, Yingjie [1 ]
Jia, Jia [1 ]
Wang, Zhen [2 ]
Li, Yuxia [1 ]
机构
[1] Shandong Univ Sci & Technol, Coll Elect Engn & Automat, Qingdao 266590, Peoples R China
[2] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Peoples R China
来源
IET CONTROL THEORY AND APPLICATIONS | 2017年 / 11卷 / 14期
基金
中国国家自然科学基金;
关键词
neural chips; memristor circuits; synchronisation; delay systems; Lyapunov methods; state feedback; control system synthesis; linear systems; neurocontrollers; fractional-order memristor-based neural networks; parameter mismatches; time delay; fractional-order differential inclusions; set-valued maps; delayed FMNNs; quasisynchronisation criteria; Lyapunov function; fractional-order differential inequalities; Mittag-Leffler function; synchronisation error bound estimation; linear state feedback; delayed state feedback control law design; FINITE-TIME SYNCHRONIZATION; PROJECTIVE SYNCHRONIZATION; EXPONENTIAL SYNCHRONIZATION; STABILITY ANALYSIS; CHAOS; OPTIMIZATION; CRITERIA; SYSTEMS; DELAYS;
D O I
10.1049/iet-cta.2017.0196
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study addresses the problem of quasi-synchronisation of fractional-order memristor-based neural networks (FMNNs) with time delay in the presence of parameter mismatches. Under the framework of fractional-order differential inclusions and set-valued maps, quasi-synchronisation of delayed FMNNs is discussed and quasi-synchronisation criteria are established by means of constructing suitable Lyapunov function, together with introducing some fractional-order differential inequalities. A new lemma on the estimate of Mittag-Leffler function is derived first, which extends the application of Mittag-Leffler function and plays a key role in the estimate of synchronisation error bound. Then, linear state feedback combined with delayed state feedback control law is designed, which guarantees that for a predetermined synchronisation error bound, quasi-synchronisation of two FMNNs with mismatched parameters will be achieved provided that the feedback gains satisfy the newly-proposed criteria. The obtained results extend and improve some previous published works on synchronisation of FMNNs. Finally, two numerical examples are given to demonstrate the effectiveness of the obtained results.
引用
收藏
页码:2317 / 2327
页数:11
相关论文
共 50 条
  • [1] Robust stability of fractional-order memristor-based Hopfield neural networks with parameter disturbances
    Liu, Shuxin
    Yu, Yongguang
    Zhang, Shuo
    Zhang, Yuting
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 509 : 845 - 854
  • [2] Quasi-uniform synchronization of fractional-order memristor-based neural networks with delay
    Yang, Xujun
    Li, Chuandong
    Huang, Tingwen
    Song, Qiankun
    Chen, Xiaofeng
    [J]. NEUROCOMPUTING, 2017, 234 : 205 - 215
  • [3] Robust synchronization of memristor-based fractional-order Hopfield neural networks with parameter uncertainties
    Liu, Shuxin
    Yu, Yongguang
    Zhang, Shuo
    [J]. NEURAL COMPUTING & APPLICATIONS, 2019, 31 (08): : 3533 - 3542
  • [4] Robust synchronization of memristor-based fractional-order Hopfield neural networks with parameter uncertainties
    Shuxin Liu
    Yongguang Yu
    Shuo Zhang
    [J]. Neural Computing and Applications, 2019, 31 : 3533 - 3542
  • [5] Global attractivity of memristor-based fractional-order neural networks
    Zhang, Shuo
    Yu, Yongguang
    Gu, Yajuan
    [J]. NEUROCOMPUTING, 2017, 227 : 64 - 73
  • [6] Projective synchronization of fractional-order memristor-based neural networks
    Bao, Hai-Bo
    Cao, Jin-De
    [J]. NEURAL NETWORKS, 2015, 63 : 1 - 9
  • [7] Synchronisation control for a class of complex-valued fractional-order memristor-based delayed neural networks
    Liu, Dan
    Ye, Dan
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2019, 50 (10) : 2015 - 2029
  • [8] Quasi-synchronisation of conformable fractional-order complex dynamical networks with mixed delays
    Bao, Baizeng
    Hu, Hongxiao
    Xu, Liguang
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2024, 55 (14) : 2996 - 3016
  • [9] Synchronization for fractional-order time-delayed memristor-based neural networks with parameter uncertainty
    Gu, Yajuan
    Yu, Yongguang
    Wang, Hu
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2016, 353 (15): : 3657 - 3684
  • [10] Stability and synchronization of memristor-based fractional-order delayed neural networks
    Chen, Liping
    Wu, Ranchao
    Cao, Jinde
    Liu, Jia-Bao
    [J]. NEURAL NETWORKS, 2015, 71 : 37 - 44