Prospects for kilonova signals in the gravitational-wave era

被引:12
|
作者
Mochkovitch, R. [1 ]
Daigne, F. [1 ]
Duque, R. [1 ]
Zitouni, H. [2 ]
机构
[1] Sorbonne Univ, CNRS, Inst Astrophys Paris, UMR 7095, 98Bis Blvd Arago, F-75014 Paris, France
[2] Dr Yahia Fares Univ, PTEA Lab, Fac Sci, Medea, Algeria
关键词
gravitational waves; stars: neutron; TRANSIENT FACILITY SEARCHES; NEUTRON-STAR MERGERS; ELECTROMAGNETIC SIGNATURES; LUMINOSITY FUNCTION; DETECTABILITY; COUNTERPARTS; DETECTIONS; GW170817; JETS; MASS;
D O I
10.1051/0004-6361/202140689
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The binary neutron star merger gravitational-wave signal GW170817 was followed by three electromagnetic counterparts, including a kilonova arising from the radioactivity of freshly synthesized r-process elements in ejecta from the merger. Finding kilonovae after gravitational-wave triggers is crucial for (i) the search for further counterparts, such as the afterglow, (ii) probing the diversity of kilonovae and their dependence on the system's inclination angle, and (iii) building a sample for multi-messenger cosmology. During the third observing run of the gravitational-wave interferometer network, no kilonova counterpart was found. We aim to predict the expected population of detectable kilonova signals for the upcoming O4 and O5 observing runs of the LIGO-Virgo-KAGRA instruments. Using a simplified criterion for gravitational-wave detection and a simple GW170817-calibrated model for the kilonova peak magnitude, we determine the rate of kilonovae in reach of follow-up campaigns and their distributions in magnitude for various bands. We briefly consider the case of GW190425, the only binary neutron star merger confirmed since GW170817, and obtain constraints on its inclination angle from the non-detection of its kilonova, assuming the source was below the follow-up thresholds. We also show that non-gravitational-wave-triggered kilonovae can be a numerous class of sources in future surveys and briefly discuss associations with short bright gamma-ray bursts. We finally discuss the detection of the jetted outflow afterglow in addition to the kilonova.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] A kilonova as the electromagnetic counterpart to a gravitational-wave source
    S. J. Smartt
    T.-W. Chen
    A. Jerkstrand
    M. Coughlin
    E. Kankare
    S. A. Sim
    M. Fraser
    C. Inserra
    K. Maguire
    K. C. Chambers
    M. E. Huber
    T. Krühler
    G. Leloudas
    M. Magee
    L. J. Shingles
    K. W. Smith
    D. R. Young
    J. Tonry
    R. Kotak
    A. Gal-Yam
    J. D. Lyman
    D. S. Homan
    C. Agliozzo
    J. P. Anderson
    C. R. Angus
    C. Ashall
    C. Barbarino
    F. E. Bauer
    M. Berton
    M. T. Botticella
    M. Bulla
    J. Bulger
    G. Cannizzaro
    Z. Cano
    R. Cartier
    A. Cikota
    P. Clark
    A. De Cia
    M. Della Valle
    L. Denneau
    M. Dennefeld
    L. Dessart
    G. Dimitriadis
    N. Elias-Rosa
    R. E. Firth
    H. Flewelling
    A. Flörs
    A. Franckowiak
    C. Frohmaier
    L. Galbany
    Nature, 2017, 551 : 75 - 79
  • [2] A kilonova as the electromagnetic counterpart to a gravitational-wave source
    Smartt, S. J.
    Chen, T. -W.
    Jerkstrand, A.
    Coughlin, M.
    Kankare, E.
    Sim, S. A.
    Fraser, M.
    Inserra, C.
    Maguire, K.
    Chambers, K. C.
    Huber, M. E.
    Kruhler, T.
    Leloudas, G.
    Magee, M.
    Shingles, L. J.
    Smith, K. W.
    Young, D. R.
    Tonry, J.
    Kotak, R.
    Gal-Yam, A.
    Lyman, J. D.
    Homan, D. S.
    Agliozzo, C.
    Anderson, J. P.
    Angus, C. R.
    Ashall, C.
    Barbarino, C.
    Bauer, F. E.
    Berton, M.
    Botticella, M. T.
    Bulla, M.
    Bulger, J.
    Cannizzaro, G.
    Cano, Z.
    Cartier, R.
    Cikota, A.
    Clark, P.
    De Cia, A.
    Della Valle, M.
    Denneau, L.
    Dennefeld, M.
    Dessart, L.
    Dimitriadis, G.
    Elias-Rosa, N.
    Firth, R. E.
    Flewelling, H.
    Floers, A.
    Franckowiak, A.
    Frohmaier, C.
    Galbany, L.
    NATURE, 2017, 551 (7678) : 75 - +
  • [3] Designing an Optimal Kilonova Search Using DECam for Gravitational-wave Events
    Bom, C. R.
    Annis, J.
    Garcia, A.
    Palmese, A.
    Sherman, N.
    Soares-Santos, M.
    Santana-Silva, L.
    Morgan, R.
    Bechtol, K.
    Davis, T.
    Diehl, H. T.
    Allam, S. S.
    Bachmann, T. G.
    Fraga, B. M. O.
    Garcia-Bellido, J.
    Gill, M. S. S.
    Herner, K.
    Kilpatrick, C. D.
    Makler, M.
    Olivares E., F.
    Pereira, M. E. S.
    Pineda, J.
    Santos, A.
    Tucker, D. L.
    Wiesner, M. P.
    Aguena, M.
    Alves, O.
    Bacon, D.
    Bernardinelli, P. H.
    Bertin, E.
    Bocquet, S.
    Brooks, D.
    Carrasco Kind, M.
    Carretero, J.
    Conselice, C.
    Costanzi, M.
    da Costa, L. N.
    De Vicente, J.
    Desai, S.
    Doel, P.
    Everett, S.
    Ferrero, I.
    Frieman, J.
    Gatti, M.
    Gerdes, D. W.
    Gruen, D.
    Gruendl, R. A.
    Gutierrez, G.
    Hinton, S. R.
    Hollowood, D. L.
    ASTROPHYSICAL JOURNAL, 2024, 960 (02):
  • [4] Launching the Era of Gravitational-wave Astrophysics
    Mavalvala, Nergis
    2017 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2017,
  • [5] Electromagnetic counterparts of gravitational-wave signals
    Nuttall L.K.
    Berry C.P.L.
    Astronomy and Geophysics, 2021, 62 (04): : 415 - 421
  • [6] Electromagnetic counterparts of gravitational-wave signals
    Nuttall, Laura K.
    Berry, Christopher P. L.
    ASTRONOMY & GEOPHYSICS, 2021, 62 (04)
  • [7] Separation of the gravitational-wave signals and the solar oscillation signals
    Ni, WT
    Xu, XH
    GRAVITATIONAL WAVES, 2000, 523 : 459 - 460
  • [8] GRAVITATIONAL-WAVE BURSTS WITH MEMORY AND EXPERIMENTAL PROSPECTS
    BRAGINSKY, VB
    THORNE, KS
    NATURE, 1987, 327 (6118) : 123 - 125
  • [9] Ringing in the new era of gravitational-wave astronomy
    不详
    PHYSICS WORLD, 2016, 29 (03) : 5 - 5
  • [10] Toward inference of overlapping gravitational-wave signals
    Pizzati, Elia
    Sachdev, Surabhi
    Gupta, Anuradha
    Sathyaprakash, B. S.
    PHYSICAL REVIEW D, 2022, 105 (10)