Automatic Code Generation Tool for Nonlinear Model Predictive Control with Jupyter

被引:3
|
作者
Katayama, S. [1 ]
Ohtsuka, T. [1 ]
机构
[1] Kyoto Univ, Grad Sch Informat, Dept Syst Sci, Sakyo Ku, Kyoto 6068501, Japan
来源
IFAC PAPERSONLINE | 2020年 / 53卷 / 02期
关键词
Predictive Control; Optimal Control; Nonlinear Control; Software Tools; ALGORITHM; OPTIMIZATION;
D O I
10.1016/j.ifacol.2020.12.447
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present an automatic code generation tool, AutoGenU for Jupyter, for nonlinear model predictive control (NMPC) with a user-friendly and interactive interface utilizing JupyterLab and Jupyter Notebook. We utilize a symbolic computation package SymPy for automatic C++ code generation. We also developed numerical solvers of NMPC using the continuation/GMRES (C/GMRES) method and multiple-shooting-based C/GMRES method in C++. AutoGenU for Jupyter provides the simulation environment of NMPC with these solvers and visualization of the simulation results. We give an example of code generation and numerical simulation of a swing-up control of a cart pole using AutoGenU for Jupyter. Copyright (C) 2020 The Authors.
引用
收藏
页码:7033 / 7040
页数:8
相关论文
共 50 条
  • [1] Model Based Automatic Code Generation for Nonlinear Model Predictive Control
    Samadi, Behzad
    NUMERICAL SOFTWARE VERIFICATION (NSV 2016), 2017, 10152 : 85 - 95
  • [2] A Tutorial on C/GMRES and Automatic Code Generation for Nonlinear Model Predictive Control
    Ohtsuka, Toshiyuki
    2015 EUROPEAN CONTROL CONFERENCE (ECC), 2015, : 73 - 86
  • [3] AutoMATiC: Code Generation of Model Predictive Control Algorithms for Microcontrollers
    Chaber, Patryk
    Lawrynczuk, Maciej
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (07) : 4547 - 4556
  • [4] A Parallel Code Generation Toolkit for Nonlinear Model Predictive Control
    Deng, Haoyang
    Ohtsuka, Toshiyuki
    2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 4920 - 4926
  • [5] Automatic Code Generation of MIMO Model Predictive Control Algorithms using Transcompiler
    Chaber, Patryk
    Lawrynczuk, Maciej
    TRENDS IN ADVANCED INTELLIGENT CONTROL, OPTIMIZATION AND AUTOMATION, 2017, 577 : 315 - 324
  • [6] A toolkit for nonlinear model predictive control using gradient projection and code generation
    Kalmari, Jouko
    Backman, Juha
    Visala, Arto
    CONTROL ENGINEERING PRACTICE, 2015, 39 : 56 - 66
  • [7] C Code Generation Applied to Nonlinear Model Predictive Control for an Artificial Pancreas
    Boiroux, Dimitri
    Jorgensen, John Bagterp
    2017 21ST INTERNATIONAL CONFERENCE ON PROCESS CONTROL (PC), 2017, : 327 - 332
  • [8] A Tool for Automatic Code Generation from Schemas
    Gavilanes, Antonio
    Martin, Pedro J.
    Torres, Roberto
    COMPUTATIONAL SCIENCE - ICCS 2009, 2009, 5545 : 63 - 73
  • [9] A formulation of nonlinear model predictive control using automatic differentiation
    Cao, Y
    JOURNAL OF PROCESS CONTROL, 2005, 15 (08) : 851 - 858
  • [10] Automatic Snake Gait Generation Using Model Predictive Control
    Hannigan, Emily
    Song, Bing
    Khandate, Gagan
    Haas-Heger, Maximilian
    Yin, Ji
    Ciocarlie, Matei
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 5101 - 5107